早教吧作业答案频道 -->数学-->
已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
题目详情
已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
▼优质解答
答案和解析
因为f(n)=cosnπ/4
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
看了 已知f(n)=cosnπ/4...的网友还看了以下:
,;定义在正整数集f(x)对任意m,n,都有f(m+n)=f(m)+f(n)+4(m+n)-2,且 2020-05-13 …
函数f定义在正整数集上f(1)=1,f(3)=3,且对每个正整数n都有f(2n)=f(n),f(4 2020-05-16 …
设函数f:N→N,f(n)=n+1,下列表述正确的是()A:f存在反函数B:f是双射的C:f是满射 2020-05-17 …
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[ 2020-05-21 …
1.﹙x²-5x+5﹚的x²+4x-60次方=1求x所有值的和.2.函数f(1)=2005,而且f 2020-06-06 …
不等式的证明设m,n为正整数,f(n)=1+1/2+1/3+.+1/n,证明(1)若n>m,则f( 2020-07-16 …
正整数可以分为两个互不相交的正整数子集:{f(1),f(2),f(3)...f(n)...};{g 2020-07-20 …
设f(N)、g(N)是定义在正数集上的正函数.如果存在正的常数C和自然数N0,使得当N≥N0时有f 2020-07-31 …
若存在x0,n属于N,使f(x0)+f(x0+1)+……+f(x0+n)=63成立若存在x0,n属于 2020-10-31 …
已知f(n)=1+12+13+…+1n,n∈n*,求证:(1)当m<n(m∈N*)时,f(n)−f( 2020-12-03 …