早教吧作业答案频道 -->数学-->
已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
题目详情
已知f(n)=cosnπ/4,n属于正整数.则f(1)+f(2)+f(3)+……f(100)=多少
▼优质解答
答案和解析
因为f(n)=cosnπ/4
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
所以对于任意k为非负整数
f(8k+1)+f(8k+2)+f(8k+3)+f(8k+4)+f(8k+5)+f(8k+6)+f(8k+7)+f(8k+8)
=cos(2kπ+π/4)+cos(2kπ+2π/4)+cos(2kπ+3π/4)+cos(2kπ+4π/4)
+cos(2kπ+5π/4)+cos(2kπ+6π/4)+cos(2kπ+7π/4)+cos(2kπ+8π/4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4+cos5π/4+cos6π/4+cos7π/4+cos8π/4
=cosπ/4+cos3π/4-1+cos5π/4+cos7π/4+1
=cosπ/4+cos3π/4+cos5π/4+cos7π/4
=0+0
=0
所以f(1)+f(2)+f(3)+……+f(8)=0
f(9)+f(10)+f(11)+……+f(16)=0
……
f(89)+f(90)+f(91)+……+f(96)=0
所以f(1)+f(2)+f(3)+……f(100)=f(97)+f(98)+f(99)+f(100)
=f(8*12+1)+f(8*12+2)+f(8*12+3)+f(8*12+4)
=f(1)+f(2)+f(3)+f(4)
=cosπ/4+cos2π/4+cos3π/4+cos4π/4
=√2/2+0-√2/2-1
=-1
看了 已知f(n)=cosnπ/4...的网友还看了以下:
1/已知等比数列{an}中,a1+a2+a3=40,a4+a5+a6=20,则前9项之和等于2/等 2020-05-13 …
对于正项数列{an},记Hn=/(a1+a2/2 +a3/3 +----+an/n ),若Hn=1 2020-05-16 …
1.函数已知f(X)的定义域是[-1,2),则f(绝对值x)的定义域为?2.y=x平方-2x-3, 2020-05-16 …
已知数列an=n/n+1,则数列{an}是()A递增数列B递减数列C摆动数列D常数列 2020-05-22 …
设数列An满足A1=-1\2,且An+1+1\An=1,则数列An的前2013项的积为多少 2020-07-11 …
已知数列an的前n项和为Sn=-2分之3乘n的平方+2分之205乘n+1则数列an的通项公式是什么 2020-07-18 …
已知等差数列{An}的前n项和为Sn,且满足S3/3-S2=1,则数列{An}的公差是多少? 2020-07-20 …
已知1,1/2,2,1/3,2,3,…1/k,2/(k-1)…k/1则数列的第2011项的值为A3 2020-07-26 …
已知数列{an}的通项公式为an=n·a的n次方(a>0且a≠1),则数列{an}的前n项和Sn? 2020-07-30 …
若{an}是首项为1,公差为2的等差数列,Bn=1/AnAn+1,则数列{bn}的前n项和和Tn 2020-07-30 …