早教吧作业答案频道 -->数学-->
已知定义域为R的函数f(x)=(1-2^x)/[2^(x+1)+a]是奇函数.(1)求a的值(2)求函数f(x)的值域;(3)若对任意x∈[π/6,2π/3],不等式f(k•cosx-5)+f(4)>0恒成立,求实数k的取值范围。
题目详情
已知定义域为R的函数f(x)=(1-2^x)/[2^(x+1)+a]是奇函数.(1)求a的值
(2)求函数f(x)的值域;
(3)若对任意x∈[π/6,2π/3],不等式f(k•cosx-5)+f(4)>0恒成立,求实数k的取值范围。
(2)求函数f(x)的值域;
(3)若对任意x∈[π/6,2π/3],不等式f(k•cosx-5)+f(4)>0恒成立,求实数k的取值范围。
▼优质解答
答案和解析
(1)
f(x)是奇函数,
∴ f(1)=-f(-1)
即 f(1)+f(-1)=0
f(1)=-1/(4+a)
f(-1)=(1/2)/(1+a)
∴ -1/(4+a)+(1/2)/(1+a)=0
即 4+a=2(1+a)
∴ a=2
(2)
f(x)=(1-2^x)/(2^(x+1)+2)
=(1/2)(1-2^x)/(1+2^x)
=(1/2)[-1+2/(1+2^x)]
∵ 1+2^x>1
∴ 2/(1+2^x)∈(0,2)
∴ -1+ 2/(1+2^x)∈(-1,1)
即 f(x)∈(-1/2,1/2)
即 值域是(-1/2,1/2)
(3)
f(x)=(1/2)[-1+2/(1+2^x)]
则显然f(x)是减函数.
f(kcosx-5)>-f(4)=f(-4)
∴ kcosx-5≤-4恒成立
即 kcosx≤1恒成立
∵ cosx∈[-1/2,√3/2]
① k>0
kcosx的最大值是(√3/2)k≤1
∴ 0
(1)
f(x)是奇函数,
∴ f(1)=-f(-1)
即 f(1)+f(-1)=0
f(1)=-1/(4+a)
f(-1)=(1/2)/(1+a)
∴ -1/(4+a)+(1/2)/(1+a)=0
即 4+a=2(1+a)
∴ a=2
(2)
f(x)=(1-2^x)/(2^(x+1)+2)
=(1/2)(1-2^x)/(1+2^x)
=(1/2)[-1+2/(1+2^x)]
∵ 1+2^x>1
∴ 2/(1+2^x)∈(0,2)
∴ -1+ 2/(1+2^x)∈(-1,1)
即 f(x)∈(-1/2,1/2)
即 值域是(-1/2,1/2)
(3)
f(x)=(1/2)[-1+2/(1+2^x)]
则显然f(x)是减函数.
f(kcosx-5)>-f(4)=f(-4)
∴ kcosx-5≤-4恒成立
即 kcosx≤1恒成立
∵ cosx∈[-1/2,√3/2]
① k>0
kcosx的最大值是(√3/2)k≤1
∴ 0
看了 已知定义域为R的函数f(x)...的网友还看了以下:
定义在R上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)*f(y),且 2020-05-13 …
如图,AB为圆O的直径,点E、F在圆O上,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB= 2020-06-27 …
如图,已知AC,BD相交于点O,且∠B=∠C,OA=OD,OE⊥CD于点E,OF⊥AB于点F,求证 2020-07-09 …
下列各项中字音不正确的一项是:()A.涕(tì)泪梯(tī)子府第(dì)B.饿莩(fú)俘(fú 2020-07-12 …
(2014•新疆)如图,AB是⊙O的直径,点F,C是⊙O上两点,且AF=FC=CB,连接AC,AF 2020-07-31 …
1.点P为圆O外一点,PS、PT是两条切线,过点P作圆O的割线PAB,交圆O于A,B两点,与ST交 2020-07-31 …
如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点 2020-07-31 …
已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H 2020-08-01 …
设F(X)=3ax^2+bx+c(a不=0),若a+b+c=o,F(0)F(1)>O,求证:1.方程 2020-11-04 …
如图,BE是O的直径,点A,C,D,F都在O上,AE=CD,连接CE,M是CE的中点,延长DE到点G 2020-11-28 …