早教吧作业答案频道 -->数学-->
如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE:BE=1:3,OF=4,求∠ADB的度数和BD的长.
题目详情
如图,矩形ABCD的对角线相交于点O,OF⊥BC,CE⊥BD,OE:BE=1:3,OF=4,求∠ADB的度数和BD的长.
▼优质解答
答案和解析
由矩形的性质可知OD=OC,
∵OE:BE=1:3,
∴E是OD的中点.
又∵CE⊥OD,
∴OC=CD,
∴OC=CD=OD,
即△OCD是等边三角形,故∠CDB=60°,
∴∠ADB=∠ADC-∠CDB=30°,
由矩形是轴对称图形得CD=2OF=8,
所以,BD=2OD=2CD=16.
∵OE:BE=1:3,
∴E是OD的中点.
又∵CE⊥OD,
∴OC=CD,
∴OC=CD=OD,
即△OCD是等边三角形,故∠CDB=60°,
∴∠ADB=∠ADC-∠CDB=30°,
由矩形是轴对称图形得CD=2OF=8,
所以,BD=2OD=2CD=16.
看了 如图,矩形ABCD的对角线相...的网友还看了以下:
如图,AC为圆O的直径,△ABD为圆O的内接三角形,AB=BD,BD交AC于F点,BE//AD交A 2020-04-27 …
(2013•吴中区二模)如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 2020-05-17 …
如图,以线段AB为直径作O,CD与O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE 2020-05-17 …
有短周期的三种元素x,y,z,已知x和y同周期,y和z同族.又知三元素最外层电子数之和为14,而质 2020-06-05 …
如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.(1)求证:A 2020-06-27 …
studentswantedfortheschoolshow.被动语态不是be+动词ed形式吗?这 2020-07-25 …
如图,⊙O的直径AB⊥CD于E,点M为⊙O上一点,tan∠CDA=1/2.(1)求证:BE=CD( 2020-07-28 …
如图,⊙O的半径为R,OA、OB为⊙O的任意两条半径,过B作BE⊥OA于点E,又作EP⊥AB于点P 2020-07-30 …
如图,AB为半圆O的直径,C为BA延长线上一点,CD切半圆O于点D,连接OD.作BE⊥CD于点E,交 2020-11-08 …
⊿ABC的三个顶点都在⊙O上,AD,BE是高,交点为H,BE的延长线交⊙O于F,下列结论:⊿ABC的 2020-12-23 …