早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为

题目详情
(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
填空:
①∠AEB的度数为______;
②线段AD,BE之间的数量关系为______.
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,CD=
2
,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
▼优质解答
答案和解析
(1)①如图1,
∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS).
∴∠ADC=∠BEC.
∵△DCE为等边三角形,
∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,
∴∠ADC=120°.
∴∠BEC=120°.
∴∠AEB=∠BEC-∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,
∴AD=BE.
故答案为:AD=BE.

(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°.
∴∠ACD=∠BCE.
在△ACD和△BCE中,
CA=CB
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(SAS).
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,
∴∠ADC=135°.
∴∠BEC=135°.
∴∠AEB=∠BEC-∠CED=90°.
∵CD=CE,CM⊥DE,
∴DM=ME.
∵∠DCE=90°,
∴DM=ME=CM.
∴AE=AD+DE=BE+2CM.

(3)∵PD=1,
∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,
∴点P在以BD为直径的圆上.
∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,
∴∠ADB=45°.AB=AD=DC=BC=
2
,∠BAD=90°.
∴BD=2.
∵DP=1,
∴BP=
3

∵A、P、D、B四点共圆,
∴∠APB=∠ADB=45°.
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,
∴由(2)中的结论可得:BP=2AH+PD.
3
=2AH+1.
∴AH=
3
−1
2

②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH-PD.
3
=2AH-1.
∴AH=
3
+1
2

综上所述:点A到BP的距离为
3
−1
2
3
+1
2