早教吧作业答案频道 -->其他-->
操作探究:数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于
题目详情
操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:
探究:
(1)若∠1=70°,∠MKN=______°;
(2)改变折痕MN位置,△MNK始终是______ 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为
,此时∠1的大小可以为______°
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:
探究:
(1)若∠1=70°,∠MKN=______°;
(2)改变折痕MN位置,△MNK始终是______ 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为
1 |
2 |
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.
▼优质解答
答案和解析
(1)如图1,
∵四边形ABCD是矩形,
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
故答案为:40;
(2)等腰,
理由:∵AB∥CD,∴∠1=∠MND,
∵将纸片沿MN折叠,∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
故答案为:等腰;
(3)如图2,当△KMN的面积最小值为
时,KN=BC=1,故KN⊥B′M,
∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,
故答案为:45°或135°(只要写出一个即可);
(4)分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.
S△MNK=S△MND=
×1×2.6=1.3.
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.
MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
×1×2.6=1.3.
△MNK的面积最大值为1.3.
∵四边形ABCD是矩形,
∴AM∥DN.
∴∠KNM=∠1.
∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°,
∴∠MKN=40°.
故答案为:40;
(2)等腰,
理由:∵AB∥CD,∴∠1=∠MND,
∵将纸片沿MN折叠,∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
故答案为:等腰;
(3)如图2,当△KMN的面积最小值为
1 |
2 |
∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,
故答案为:45°或135°(只要写出一个即可);
(4)分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合.
MK=MB=x,则AM=5-x.
由勾股定理得12+(5-x)2=x2,
解得x=2.6.
∴MD=ND=2.6.
S△MNK=S△MND=
1 |
2 |
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC.
MK=AK=CK=x,则DK=5-x.
同理可得MK=NK=2.6.
∵MD=1,
∴S△MNK=
1 |
2 |
△MNK的面积最大值为1.3.
看了 操作探究:数学研究课上,老师...的网友还看了以下:
从0、3、4、5四个数中任意抽出3个,按要求组成4个不同的三位数;(每个括号写一个数)奇数;3的倍 2020-04-09 …
从1至50这些自然数中任意取出一些不同的数,要保证其中一定存在三个数的各位数字之和相等,那么至少要 2020-05-15 …
在1-50中最多能取出多少个数,使得被取出的数中任意俩个数的平方和均不是7的倍数在1-50中最多能 2020-06-06 …
试将1、2、3、4、5、6、7分别填入下面的方框中,每个数字只用一次:口口口(这是一个三位数),口 2020-06-11 …
从1、2、3、…、100这100个数中任意挑出51个数字,证明在这51个数中,一定:(1)有2个数 2020-06-12 …
试将1、2、3、4、5、6、7分别填入下面的方框中,每个数字只用一次:口口口(这是一个三位数),口 2020-06-15 …
有一类六位数,组成每个数的六个数码互不相同,并且每个数中任意两个相邻的数码组成的两位数都能被3整除 2020-06-15 …
(2011•上海模拟)从1,2,3,4,5,6,7,8,9,10这10个数中任意抽取三个数,其中至 2020-06-27 …
从1,2,3,4,5,6,7,8,9,10这10个数中任意抽取三个数,其中仅有两个数是连续整数的概 2020-06-27 …
从1到25个自然数中任意取出7个数.证明:取出的数中,一定有两个数.这两个数中大数不超过小数1.5 2020-07-14 …