早教吧作业答案频道 -->其他-->
已知正方形ABCD和正方形AEFG,连接CF,P是CF的中点,连接EP、DP.(1)如图1,当点E在边AB上时,试研究线段EP与DP之间的数量关系和位置关系;(2)把(1)中的正方形AEFG绕点A逆时针方向旋转9
题目详情
已知正方形ABCD和正方形AEFG,连接CF,P是CF的中点,连接EP、DP.
(1)如图1,当点E在边AB上时,试研究线段EP与DP之间的数量关系和位置关系;
(2)把(1)中的正方形AEFG绕点A逆时针方向旋转90°,试在图2中画出符合题意的图形,并研究这时(1)中的结论是否仍然成立;
(3)把(1)中的正方形AEFG绕点A任意旋转某个角度(如图3),试按题意把图形补画完整,并研究(1)中的结论是否仍然成立.
(1)如图1,当点E在边AB上时,试研究线段EP与DP之间的数量关系和位置关系;
(2)把(1)中的正方形AEFG绕点A逆时针方向旋转90°,试在图2中画出符合题意的图形,并研究这时(1)中的结论是否仍然成立;
(3)把(1)中的正方形AEFG绕点A任意旋转某个角度(如图3),试按题意把图形补画完整,并研究(1)中的结论是否仍然成立.
▼优质解答
答案和解析
(1)PD=PE 且PD⊥PE.
理由:过P作MN⊥AB,交AB于点M,交CD于点N
∴∠CNM=∠DNP=90°
∵四边形ABCD和四边形AEFG都是正方形,
∴CD=CB,FG=FE.∠CDA=∠CBA=∠FGA=∠FEA=90°
∴EF∥MN∥BC.四边形CNMB是矩形,
∴MN=BC=CD,
∴CF在∠BAD的角平分线上,
∴CF平分∠DCB,
∴∠DCF=∠BCF=45°,
∴∠CPN=45°
∴PN=CN=BM.
∴CD-CN=MN-PN,
∴DN=PM
∵P是CF的中点,
∴FP=CP
∴EM=MB,
∴EM=PN.
在△PME和△DNP中
∴△PME≌△DNP(SAS),
∴PD=PE,∠NDP=∠MPE.
∵∠NDP+∠DPN=90°,
∴∠DPN+∠MPE=90°,
∴∠EPD=90°
∴PD⊥PE;
(2)画出符合题意的图形如图,(1)中的结论仍然成立.
理由如下:
延长EP交DC于点H,
∵P为CF中点,
∴FP=CP,
∵四边形ABCD和四边形AEFG都是正方形,
∴CD=AD,EF=EA,∠ADC=∠AEF=∠FED=90°,
∴EF∥CD,
∴∠EFP=∠HCP.
在△EFP和△CHP中,
,
∴△EFP≌△CHP(ASA)
∴CH=EF,EP=HP,
∴CH=AE,
∴AD-AE=CD-CH,
即DE=DH.
∵PE=PH,∠EDH=90°,
∴DP⊥EH,DP=
EH,
∴DP=PE.
∴推出PD=PE 且PD⊥PE;
(3)图形补画如图,(1)中的结论仍然成立.
理由如下:
延长EP至点K,使得PK=EP,延长FE交AB于R,作FH∥CD交EP于H,连接DE、DK、CK,
∴FH∥CD∥AB,
∴∠DCP=∠PFH,∠HFE=∠ERA.
在△CPK和△FPE中,
,
∴△CPK≌△FPE(SAS),
∴CK=EF=AE,∠CKP=∠FEP,
∴CK∥EF,
∴∠KCP=∠EFP,
∴∠KEP-∠DCP=∠EFP-∠PFH,
即∠KCD=∠EFH.
理由:过P作MN⊥AB,交AB于点M,交CD于点N
∴∠CNM=∠DNP=90°
∵四边形ABCD和四边形AEFG都是正方形,
∴CD=CB,FG=FE.∠CDA=∠CBA=∠FGA=∠FEA=90°
∴EF∥MN∥BC.四边形CNMB是矩形,
∴MN=BC=CD,
∴CF在∠BAD的角平分线上,
∴CF平分∠DCB,
∴∠DCF=∠BCF=45°,
∴∠CPN=45°
∴PN=CN=BM.
∴CD-CN=MN-PN,
∴DN=PM
∵P是CF的中点,
∴FP=CP
∴EM=MB,
∴EM=PN.
在△PME和△DNP中
|
∴△PME≌△DNP(SAS),
∴PD=PE,∠NDP=∠MPE.
∵∠NDP+∠DPN=90°,
∴∠DPN+∠MPE=90°,
∴∠EPD=90°
∴PD⊥PE;
(2)画出符合题意的图形如图,(1)中的结论仍然成立.
理由如下:
延长EP交DC于点H,
∵P为CF中点,
∴FP=CP,
∵四边形ABCD和四边形AEFG都是正方形,
∴CD=AD,EF=EA,∠ADC=∠AEF=∠FED=90°,
∴EF∥CD,
∴∠EFP=∠HCP.
在△EFP和△CHP中,
|
∴△EFP≌△CHP(ASA)
∴CH=EF,EP=HP,
∴CH=AE,
∴AD-AE=CD-CH,
即DE=DH.
∵PE=PH,∠EDH=90°,
∴DP⊥EH,DP=
1 |
2 |
∴DP=PE.
∴推出PD=PE 且PD⊥PE;
(3)图形补画如图,(1)中的结论仍然成立.
理由如下:
延长EP至点K,使得PK=EP,延长FE交AB于R,作FH∥CD交EP于H,连接DE、DK、CK,
∴FH∥CD∥AB,
∴∠DCP=∠PFH,∠HFE=∠ERA.
在△CPK和△FPE中,
|
∴△CPK≌△FPE(SAS),
∴CK=EF=AE,∠CKP=∠FEP,
∴CK∥EF,
∴∠KCP=∠EFP,
∴∠KEP-∠DCP=∠EFP-∠PFH,
即∠KCD=∠EFH.
作业搜用户
2017-10-20
看了 已知正方形ABCD和正方形A...的网友还看了以下:
四棱锥P-ABCD的底面ABCD为边长1的菱形,角BCD=60,E是CD中点,PA垂直底面ABCD 2020-05-16 …
如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F. P是AD的中点 2020-05-16 …
f(x)=px-q/x-2lnx,f(x)=qe-p/e-2,(e为自然对数的底数)(1)求p与q 2020-05-16 …
如图,在三角形ABC中,点D是边BC的中点,点E在三角形ABC内,AE平分角BAC,CE⊥AE,点 2020-07-09 …
在△ABC中,∠A=50°,点D,E分别是边AC,AB上的点(不与A,B,C重合),点P是平面内一 2020-07-21 …
如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合)点E在射线BC上,且PB= 2020-07-30 …
在矩形ABCD中,AB=8,AD=10,P是射线DA上一点,将三角板的直角顶点置于点P,三角板的两 2020-07-30 …
设g(x)=px-q/x-2f(x),其中f(x)=lnx,且g(e)=qe-p/e-2.(e为自 2020-08-02 …
已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过 2020-08-03 …
二阶微分方程求解题目2xy''=y'令p=y',则y''=p'=>2xp'=p=>2*dp/p=dx 2020-11-16 …