早教吧作业答案频道 -->数学-->
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,则t的取值范围是()A.t≥2或t≤-2或t=0B.t≥2或t≤2C.t>2或t<-2或t=0D.-2≤t
题目详情
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,则t的取值范围是( )
A. t≥2或t≤-2或t=0
B. t≥2或t≤2
C. t>2或t<-2或t=0
D. -2≤t≤2
A. t≥2或t≤-2或t=0
B. t≥2或t≤2
C. t>2或t<-2或t=0
D. -2≤t≤2
▼优质解答
答案和解析
根据题意,f(x)是奇函数且f(-1)=-1,则f(1)=1,
又由f(x)在[-1,1]上是增函数,则f(x)在[-1,1]上最大值为f(1)=1,
若当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,
则有1≤t2-2at+1对于a∈[-1,1]恒成立,即t2-2at≥0对于a∈[-1,1]恒成立,
当t=0时显然成立
当t≠0时,则t2-2at≥0成立,又a∈[-1,1]
令g(a)=2at-t2,a∈[-1,1]
当t>0时,g(a)是减函数,故令g(1)≥0,解得t≥2
当t<0时,g(a)是增函数,故令g(-1)≥0,解得t≤-2
综上知,t≥2或t≤-2或t=0;
故选A.
又由f(x)在[-1,1]上是增函数,则f(x)在[-1,1]上最大值为f(1)=1,
若当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,
则有1≤t2-2at+1对于a∈[-1,1]恒成立,即t2-2at≥0对于a∈[-1,1]恒成立,
当t=0时显然成立
当t≠0时,则t2-2at≥0成立,又a∈[-1,1]
令g(a)=2at-t2,a∈[-1,1]
当t>0时,g(a)是减函数,故令g(1)≥0,解得t≥2
当t<0时,g(a)是增函数,故令g(-1)≥0,解得t≤-2
综上知,t≥2或t≤-2或t=0;
故选A.
看了 设奇函数f(x)在[-1,1...的网友还看了以下:
在坐标平面上有两个区域M和N,M是由y≥0、y≤x和y≤2-x三个不等式来确定的,N是随t变化的区 2020-05-13 …
设函数f(x)=(1+1/n)的n次方(n∈正整数,n大于1,x∈r)1,对于任意x,证明(f(2 2020-05-14 …
讨论:关于如何求卷积x(t)*h(-t)的积分表达式?以前信号与系统里学过了x(t)*h(t)的表 2020-06-06 …
已知f(x-1)=x^2-4x,求函数f(x),f(2x+1)的解析式令t=x-1,则有:x=t+ 2020-06-17 …
已知函数y=x平方-2x+2在t≤x≤t+1范围内的最小值为s,写出函数关于s的函数解析式,并求出 2020-07-12 …
对于集合M,定义函数fM(x)=−1,x∈M1,x∉M.对于两个集合M,N,定义集合M△N={x| 2020-08-01 …
x=t+1/t,y=t-1/t化成普通方程x=t+1/t,y=t-1/t(t为参数),化成x=t+ 2020-08-02 …
1+x+x(x+1)+x(x+1)^2=(1+x)[1+x+x(x+1)]=(1+x)^2(1+x 2020-08-03 …
当t≤x≤t+1时,求函数y=12x2-x-52的最值(其中t为常数). 2020-10-31 …
f(x)=[(√x)+1]÷(x+3)中,如果令(√x)+1=tf(x)=[(√x)+1]÷(x+3 2020-11-03 …