早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,则t的取值范围是()A.t≥2或t≤-2或t=0B.t≥2或t≤2C.t>2或t<-2或t=0D.-2≤t

题目详情
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,则t的取值范围是(  )
A. t≥2或t≤-2或t=0
B. t≥2或t≤2
C. t>2或t<-2或t=0
D. -2≤t≤2
▼优质解答
答案和解析
根据题意,f(x)是奇函数且f(-1)=-1,则f(1)=1,
又由f(x)在[-1,1]上是增函数,则f(x)在[-1,1]上最大值为f(1)=1,
若当a∈[-1,1]时,f(x)≤t2-2at+1对所有的x∈[-1,1]恒成立,
则有1≤t2-2at+1对于a∈[-1,1]恒成立,即t2-2at≥0对于a∈[-1,1]恒成立,
当t=0时显然成立
当t≠0时,则t2-2at≥0成立,又a∈[-1,1]
令g(a)=2at-t2,a∈[-1,1]
当t>0时,g(a)是减函数,故令g(1)≥0,解得t≥2
当t<0时,g(a)是增函数,故令g(-1)≥0,解得t≤-2
综上知,t≥2或t≤-2或t=0;
故选A.