早教吧作业答案频道 -->数学-->
已知函数f(X)=loga(x-1分之1-kx)(a>1)是奇函数,f(-x)+f(x)=01.求K的值,并求该函数的定义域,2.根据1的结果,判断f(x)在(1,正无穷修改2.根据1的结果,判断f(x)在(1,正无穷)上的单调性,并给出证明。
题目详情
已知函数f(X)=loga(x-1分之1-kx)(a>1)是奇函数,f(-x)+f(x)=0
1.求K的值,并求该函数的定义域,
2.根据1的结果,判断f(x)在(1,正无穷
修改2.根据1的结果,判断f(x)在(1,正无穷)上的单调性,并给出证明。
1.求K的值,并求该函数的定义域,
2.根据1的结果,判断f(x)在(1,正无穷
修改2.根据1的结果,判断f(x)在(1,正无穷)上的单调性,并给出证明。
▼优质解答
答案和解析
1.
函数是奇函数,则
(1-kx)/(x-1)=-(x+1)/(1+kx)
1-k^2x^2=1-x^2
k^2=1
k=1或k=-1
真数>0
(1-kx)/(x-1)>0
-(1+kx)/(x+1)>0
k=1时,(1-x)/(x-1)=-11,loga[(x+1)/(x-1)]随着(x+1)/(x-1)递增而递增,随(x+1)/(x-1)递减而递减.
(x+1)/(x-1)=1+2/(x-1)
x-1增大,2/(x-1)减小,(x+1)/(x-1)减小.(x+1)/(x-1)在(1,正无穷)上单调递减.
因此f(x)在(1,正无穷)上单调递减.
函数是奇函数,则
(1-kx)/(x-1)=-(x+1)/(1+kx)
1-k^2x^2=1-x^2
k^2=1
k=1或k=-1
真数>0
(1-kx)/(x-1)>0
-(1+kx)/(x+1)>0
k=1时,(1-x)/(x-1)=-11,loga[(x+1)/(x-1)]随着(x+1)/(x-1)递增而递增,随(x+1)/(x-1)递减而递减.
(x+1)/(x-1)=1+2/(x-1)
x-1增大,2/(x-1)减小,(x+1)/(x-1)减小.(x+1)/(x-1)在(1,正无穷)上单调递减.
因此f(x)在(1,正无穷)上单调递减.
看了 已知函数f(X)=loga(...的网友还看了以下:
f(x+y)=f(x)f(y),求f'(x)与f(x)的关系?设f在正无穷到负无穷有定义,且对所有 2020-05-13 …
已知函数f(x)=ax²+bx+c(a≠0),且f(x)=x无实根,下列命题中:(1)方程ff(x 2020-06-02 …
英语翻译如有一介臣,断断猗,无他技,其心休休焉,其如有容焉,人之有技,若己有之,人之彦圣,其心好之 2020-06-17 …
梅花草堂集兰之味体现兰的什么品格原文:兰之味,非可逼而取也.盖在有无近远续断之间,纯以情韵胜.氲氲 2020-06-19 …
函数的原函数除常数项之外是唯一确定的吗?对于给定的在[a,b]区间内连续的函数f(x),有无穷多个 2020-06-27 …
设函数f(x)=x2-ax+b.(Ⅰ)讨论函数f(sinx)在(-π2,π2)内的单调性并判断有无 2020-07-09 …
国庆高等数学函数,极限概念疑问9,夹逼准则其中,请仔细读我的疑问,不要一两句的应付回答,9、有个定 2020-07-31 …
电容板之间间距加倍对两板间作用力的影响情况一电容板间距为D两板间作用力F断电后距离拉至2D作用力为多 2020-11-08 …
指出下列句子的句式特点:A.宾语前置B.判断句C.省略句D.定语后置E.被动句F.介词结构后置(1) 2020-11-26 …
国庆高等数学函数,极限概念疑问9,请仔细读我的疑问,不要一两句的应付回答,急需,拜托9、有个定理2, 2020-12-17 …