早教吧作业答案频道 -->其他-->
微积分余式定理remaindertheorem.完全不懂怎么用.整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f
题目详情
微积分余式定理 remainder theorem.完全不懂怎么用.
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r.
如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a.反过来,如果f(x)含有因式x-a,那么,f(a)=0.
余式定理的概念
当一个多项式 f(x) 除以 x – a 时,所得的 余数等于 f(a).
例如:当 f(x) = x^2 + x + 2 除以 x – 1 时,
余数 = f(1) = 1^2 + 1 + 2 = 4
余式定理的推论
当一个多项式 f(x) 除以 mx – n 时,所得的余数 等于 f(n/m).
例如:求当 9x^2 + 6x – 7 除以 3x + 1 时所得的余数.
设 f(x) = 9x2 + 6x – 7.
= 1 – 2 – 7=-8
▼优质解答
答案和解析
f(x)=(x-a)q(x)+R,
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
f(a)=R;
f(x)=(mx-n)q(x)+R
f(n/m)=R
看了 微积分余式定理remaind...的网友还看了以下:
证明:若(p,q)=1,则[p/q]+[2p/q]+.+[(q-1)p/q]=(p-1)(q-1) 2020-04-25 …
有两个多面体都有内切球,两内切球半径相等,两多面体体积之比为p,表面积之比为q则p/q等多少? 2020-06-28 …
题目是这样的:一定量的单原子理想气体在等压膨胀过程中对外做功W与吸收热量Q之比W/Q是多少?若为双 2020-07-05 …
如果两个物体在进行热传递的过程中有热量损失,则有Q吸Q放;如果已知损失部分的热量为Q损,则Q吸、Q 2020-07-12 …
已知命题P:2+2=5,命题Q:3>2,则下列判断错误的是A.“P∨Q”为真,“┐Q”为假B.“P 2020-08-01 …
否命题的问题1若P则Q的否命题是:若非P则非Q;若P则Q,它的命题的否是:P且非Q;那P且非Q,它 2020-08-01 …
已知{an}是等差数列,其前n项和记为Sn,设集合P={(an,Sn/n)[n∈N+},Q={(x 2020-08-02 …
设{an}是公比为q(q≠1)的无穷等比数列,若{an}中任意两项之积仍是该数列中的项,则称{an 2020-08-02 …
设有inta(5)=(1.2.5.9.12),*p=a*q=a+3,则*q·*p的值是多少?A设有i 2020-10-31 …
对于命题p和命题q,若p真q假,则命题p∧q和命题p∨q的真假为()A.p∧q和p∨q都为真B.p∧ 2020-12-13 …