早教吧作业答案频道 -->数学-->
x-cot(xy)=6,求dy/dx
题目详情
x-cot(xy)=6,求dy/dx
▼优质解答
答案和解析
let u = xy
(d/dx) [ x - cot (xy) ] = 0
1 - (d/dx) [ cot(xy) ] =0
1 = (d/du) [ cot u] * (d/dx) (u)
1 = [ -cosec^2 (xy) ] [ y + x (dy/dx) ]
1 / [ -cosec^2 (xy) ] = y + x (dy/dx)
dy/dx = [ y[ cosec^2 (xy)] +1 ] / { -x [ cosec^2 (xy) ] }
(d/dx) [ x - cot (xy) ] = 0
1 - (d/dx) [ cot(xy) ] =0
1 = (d/du) [ cot u] * (d/dx) (u)
1 = [ -cosec^2 (xy) ] [ y + x (dy/dx) ]
1 / [ -cosec^2 (xy) ] = y + x (dy/dx)
dy/dx = [ y[ cosec^2 (xy)] +1 ] / { -x [ cosec^2 (xy) ] }
看了 x-cot(xy)=6,求d...的网友还看了以下: