早教吧作业答案频道 -->数学-->
用数学归纳法证明1^3+2^3+...+n^3+3(1^5+2^5+...+n^5)=n^3(n+1)^3/2
题目详情
用数学归纳法证明1^3+2^3+...+n^3+3(1^5+2^5+...+n^5)=n^3(n+1)^3/2
▼优质解答
答案和解析
当n=1时,等式左边=1^3+3*(1^5)=4,等式右边=1^3(1+1)^3/2=4,等式成立; 假设当n=k(k≧1)时等式成立,即:1^3+2^3+...+k^+3(1^5+2^5+...+k^5)=k^3(k+1)^3/2,两边同时加(k+1)^3+3(k+1)^5:1^3+2^3+...+k^3+(k+1)^3+3[1^5+2^5+...+k^5+(k+1)^5]=k^3(k+1)^3/2+(k+1)^3+3(k+1)^5=(k+1)^3[k^3/2+1+3(k+1)^2]=(k+1)^3(k^3+6k^2+12k+8)/2=(k+1)^3(k+2)^3/2=(k+1)^3[(k+1)+1]^3/2,所以当n=k+1时原等式也成立,所以对所有正整数n,原等式恒成立.
看了 用数学归纳法证明1^3+2^...的网友还看了以下:
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
8年级数学题:3的n次方+m能被13整除,证明3的n+3次方能被13整除.急用,谢谢刚知道:3^( 2020-05-15 …
关于3个数的比例差别最小的问题如果有3个数的比,如m:n:l,我的目标是使这3个数尽量相等,即比例 2020-05-23 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类已知一 2020-07-10 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …
小李准备将1,2,...,n这n个数输入电脑,并计算其平均数,当他认为输入完毕时,电脑显示只输入了( 2020-11-27 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
我们可以通过计算求得:1+2+3+...+n=n*(n+1)除以2,其中n是正整数,现在我们来研究一 2020-12-04 …