早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知直线AB交两坐标于A、B两点,且OA=OB=1,点P(a、b)是双曲线y=12x上在第一象内的点过点P作PM⊥x轴于M、PN⊥y轴于N.两垂线与直线AB交于E、F.(1)分别写出点E、F的坐标(分别用a或b

题目详情
如图,已知直线AB交两坐标于A、B两点,且OA=OB=1,点P(a、b)是双曲线y=
1
2x
上在第一象内的点过点P作PM⊥x轴于M、PN⊥y轴于N.两垂线与直线AB交于E、F.
(1)分别写出点E、F的坐标(分别用a或b表示);
(2)求△OEF的面积(结果用a、b表示);
(3)△AOF与△BOE是否相似?请说明理由;
(4)当P在双曲线y=
1
2x
上移动时,△OEF随之变动,观察变化过程,△OEF三内角中有无大小始终保持不变的内角?若有,请指出它的大小,并说明理由.
▼优质解答
答案和解析
(1)设直线EF的解析式为y=kx+b,
由题知A(1,0),B(0,1),
把A(1,0),B(0,1)代入y=kx+b,
得k+b=0,b=1,
解得k=-1,b=1.
∴y=-x+1.
∵点P(a,b)是反比例函数y=
1
2x
图象上的点,
∴b=
1
2a

∴E(a,1-a),F(1-
1
2a
1
2a
);

(2)∵点E、F的坐标分别为E(a,1-a),F(1-b,b),
∴NF=1-b,ME=1-a,EP=b-(1-a)=a+b-1,FP=a-(1-b)=a+b-1,
∵S△OEF=S矩形OMPN-S△ONF-S△OME-S△EPF
∴S△OEF=ab-
1
2
×b(1-b)-
1
2
×a(1-a)-
1
2
×(a+b-1)×(a+b-1),
=
1
2
(a+b-1);
即S△OEF=
1
2
(a+b-1);

(3)△AOF与△BOE一定相似.
理由如下:
∵OA=OB=1,
∴AB=
2
,∠OBA=∠OAB=45°,
∴AE=
2
AM=
2
(1-a),BF=
2
BN=
2
(1-
1
2a
),
∴BE=BA-AE=
作业帮用户 2017-09-28