早教吧作业答案频道 -->数学-->
在数列an中,a1=1,2an+1==(1+1/n)^2*an证明:数列{an/n^2}是等比数列,并求an的通项公式;(2)令bn=an+1-1/2an,求数列{bn}的前n相和Sn;(3)求数列{an}的前n相和Tn
题目详情
在数列an中,a1=1,2an+1==(1+1/n)^2*an
证明:数列{an/n^2}是等比数列,并求an的通项公式;(2)令bn=an+1-1/2an,求数列{bn}的前n相和Sn;(3)求数列{an}的前n相和Tn
证明:数列{an/n^2}是等比数列,并求an的通项公式;(2)令bn=an+1-1/2an,求数列{bn}的前n相和Sn;(3)求数列{an}的前n相和Tn
▼优质解答
答案和解析
(1)
2a(n+1)=(1+1/n)^2*an
= [(n+1)/n]^2 .an
2a(n+1)/(n+1)^2 = an/n^2
[a(n+1)/(n+1)^2]/[an/n^2] = 1/2
=>{an/n^2}是等比数列
[a(n+1)/(n+1)^2]/[an/n^2] = 1/2
[an/n^2]/[a1/1^2]=(1/2)^(n-1)
an/n^2 = (1/2)^(n-1)
an = n^2 .(1/2)^(n-1)
(2)
bn = a(n+1) -(1/2)an
= (n+1)^2.(1/2)^n - (1/2)[n^2 .(1/2)^(n-1)]
= (1/2)^n .(2n+1)
= n.(1/2)^(n-1) + (1/2)^n
consider
1+x+x^2+..+x^n = (x^(n+1)-1)/(x-1)
1+2x+..+nx^(n-1)=[(x^(n+1)-1)/(x-1)]'
= [ nx^(n+1)-(n+1)x^n +1] /(x-1)^2
put x=1/2
1.(1/2)^0+ 2.(1/2)^1 +...n(1/2)^(n-1)
=4[ n.(1/2)^(n+1)-(n+1).(1/2)^n +1]
Sn =b1+b2+..+bn
= 4[ n.(1/2)^(n+1)-(n+1).(1/2)^n +1] + ( 1-(1/2)^n )
= (1/2)^n .( 2n - 4(n+1) -1 ) + 5
= 5 - (1/2)^n .(2n+5)
2a(n+1)=(1+1/n)^2*an
= [(n+1)/n]^2 .an
2a(n+1)/(n+1)^2 = an/n^2
[a(n+1)/(n+1)^2]/[an/n^2] = 1/2
=>{an/n^2}是等比数列
[a(n+1)/(n+1)^2]/[an/n^2] = 1/2
[an/n^2]/[a1/1^2]=(1/2)^(n-1)
an/n^2 = (1/2)^(n-1)
an = n^2 .(1/2)^(n-1)
(2)
bn = a(n+1) -(1/2)an
= (n+1)^2.(1/2)^n - (1/2)[n^2 .(1/2)^(n-1)]
= (1/2)^n .(2n+1)
= n.(1/2)^(n-1) + (1/2)^n
consider
1+x+x^2+..+x^n = (x^(n+1)-1)/(x-1)
1+2x+..+nx^(n-1)=[(x^(n+1)-1)/(x-1)]'
= [ nx^(n+1)-(n+1)x^n +1] /(x-1)^2
put x=1/2
1.(1/2)^0+ 2.(1/2)^1 +...n(1/2)^(n-1)
=4[ n.(1/2)^(n+1)-(n+1).(1/2)^n +1]
Sn =b1+b2+..+bn
= 4[ n.(1/2)^(n+1)-(n+1).(1/2)^n +1] + ( 1-(1/2)^n )
= (1/2)^n .( 2n - 4(n+1) -1 ) + 5
= 5 - (1/2)^n .(2n+5)
看了 在数列an中,a1=1,2a...的网友还看了以下:
数列{an}的通项an=n2(cos2(n派/3)-sin(2n派/3),其前n项和为Sn(1)求 2020-04-05 …
设{an}是首项为1的正项数列,且(n+1)*[a(n+1)]^2-n*(an)^2+a(n+1) 2020-04-09 …
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
对于正项数列{an},记Hn=/(a1+a2/2 +a3/3 +----+an/n ),若Hn=1 2020-05-16 …
数列{An},An>0,前n项和为Sn,A1=2 An=2倍根号下(2S(n-1))再加上2 求A 2020-05-17 …
数列a(n+1)=an+1/an问题求ana(n+1)=an+1/an就是第n+1项等于第n项加上 2020-05-17 …
在数列an中,a1=3,na(n+1)-(n+1)an=2n(n+1)在数列{an}中,a1=3, 2020-05-21 …
已知a1=1,an=n(a(n+1)-an),则数列{an}的通项公式an为————(1,n,n+ 2020-06-06 …
为什么拉格朗日型余项的N前阶导数为零是因为代入X0后为零吗?如果这样,那垃拉格朗日型余项的第N+1 2020-06-10 …
高等数学泰勒公式求教(就像听天书)求函数f(x)=x(e^x)的带有佩亚诺型余项的n阶麦克劳林公式 2020-06-10 …