早教吧作业答案频道 -->数学-->
设f(x)可导,且f(0)=0,F(x)=∫﹙0→x﹚{[t^(n-1)]f(x^n-t^n)}dt,求lim(x→0)[f(x)/x^2n](n为自然数)
题目详情
设f(x)可导,且f(0)=0,F(x)=∫﹙0→x﹚{[t^(n-1)]f(x^n-t^n)}dt,求lim (x→0)[f(x)/x^2n](n为自然数)
▼优质解答
答案和解析
结果是f'(0)/(2n)
题目应该是计算lim{x→0}F(x)/x^(2n)吧?
F(x)=1/n∫{0,x}f(x^n-t^n)d(t^n)
=1/n∫{x^n,0}f(z)*(-1)d(z) 令x^n-t^n=z,则t^n=x^n-z
=1/n∫{0,x^n}f(z)d(z)
lim{x→0}F(x)/x^(2n)=lim{x→0}[1/n*f(x^n)*n*x^(n-1)]/[2*n*x^(2n-1)]
=lim{x→0}f(x^n)/(2*n*x^n)
=lim{x→0}[f(x^n)-f(0)/[2*n*(x^n-0)]
=1/(2n)*lim{x→0}[f(x^n)-f(0)/(x^n-0)
=1/(2n)*f'(0)
题目应该是计算lim{x→0}F(x)/x^(2n)吧?
F(x)=1/n∫{0,x}f(x^n-t^n)d(t^n)
=1/n∫{x^n,0}f(z)*(-1)d(z) 令x^n-t^n=z,则t^n=x^n-z
=1/n∫{0,x^n}f(z)d(z)
lim{x→0}F(x)/x^(2n)=lim{x→0}[1/n*f(x^n)*n*x^(n-1)]/[2*n*x^(2n-1)]
=lim{x→0}f(x^n)/(2*n*x^n)
=lim{x→0}[f(x^n)-f(0)/[2*n*(x^n-0)]
=1/(2n)*lim{x→0}[f(x^n)-f(0)/(x^n-0)
=1/(2n)*f'(0)
看了 设f(x)可导,且f(0)=...的网友还看了以下:
定义符号函数sgnx=1,x>00,x=0-1,x<0,设f(x)=sgn(12-x)+12•f1 2020-05-13 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
设f(x)=x^n•sin(1/x)(x≠0),且f(0)=0,则f(x)在x=0处()设f(x) 2020-05-20 …
已知函数g(x)=mx2-2mx+1+n,(n≥0)在[1,2]上有最大值1和最小值0.设f(x) 2020-06-08 …
已知二次函数y=g(x)的导函数图象与直线y=2x平行且y=g(x)在x=-1处取得极小值m-1( 2020-07-04 …
数学挑战题设f(x)=ax^2+bx+cf(x)在区间[-2,2]上的最大值最小值分别为M,m设f 2020-07-30 …
已知三次函数f(x)=ax3+bx2+cx+d(a≠0),设f'(x)是函数y=f(x)的导数,f 2020-07-31 …
设f(x)在[a,b]上有二阶连续导数且f(a)=f(b)=0,M=max|f''(x)|,证明 2020-08-02 …
二元高数1.z=x^3y^5+x^3y,则对x求二阶偏导x=1,y=1偏导=?2.u=xy^(1/2 2020-11-01 …
(2012•韶关二模)定义符号函数sgnx=1,x>00,x=0−1,x<0,设f(x)=sgn(1 2020-11-12 …