早教吧作业答案频道 -->数学-->
是否存在等差数列{an}使a1Cn0+a2Cn1+a3Cn2+…+a(n+1)Cnn=n*2^n……是否存在等差数列{an}是a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n*2^n对任意n属于正整数成立?若存在求出{an}通项公式比如,Cn2表示从n个元素中选2个的
题目详情
是否存在等差数列{an}使a1Cn0+a2Cn1+a3Cn2+…+a(n+1)Cnn=n*2^n……
是否存在等差数列{an}是a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n*2^n对任意n属于正整数成立?若存在求出{an}通项公式
比如,Cn2表示从n个元素中选2个的组合
是否存在等差数列{an}是a1Cn0+a2Cn1+a3Cn2+…+an+1Cnn=n*2^n对任意n属于正整数成立?若存在求出{an}通项公式
比如,Cn2表示从n个元素中选2个的组合
▼优质解答
答案和解析
设存在an=a1+(n-1)d
a1C(n,0)+a2C(n,1)+a3C(n,2)+…+a(n+1)C(n,n)
=a1C(n,0)+(a1+d)C(n,1)+(a1+2d)C(n,2)+…+[a1+(n-1)d]C(n,n-1)+[a1+nd]C(n,n)
=a1[C(n,0)+C(n,1)+C(n,2)+…+C(n,n)]+[dC(n,1)+2dC(n,2)+…+(n-1)dC(n,n-1)+ndC(n,n)]
=a1*2^n+d[C(n,1)+2C(n,2)+…+(n-1)C(n,n-1)+nC(n,n)]
=a1*2^n+(1/2)d{nC(n,n)+[C(n,1)+(n-1)C(n,n-1)]+[2C(n,2)+(n-2)C(n-2)]+…+[(n-2)C(n,n-2)+2C(n,2)]+[(n-1)C(n,n-1)+C(n,1)]+nC(n,n)}
=a1*2^n+(1/2)d{nC(n,0)+nC(n,1)+nC(n,2)+…+nC(n,n-2)+nC(n,n-1)+nC(n,n)}
=a1*2^n+(1/2)dn{C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)}
=a1*2^n+(1/2)dn*2^n
=[a1+(1/2)dn]2^n
=n*2^n
要使上式恒成立,只要a1+(1/2)dn=n恒成立,
只要a1=n(1-d/2)恒成立,
所以当a1=0,d=2时可满足要求,
所以
an=2n-2为所求.
a1C(n,0)+a2C(n,1)+a3C(n,2)+…+a(n+1)C(n,n)
=a1C(n,0)+(a1+d)C(n,1)+(a1+2d)C(n,2)+…+[a1+(n-1)d]C(n,n-1)+[a1+nd]C(n,n)
=a1[C(n,0)+C(n,1)+C(n,2)+…+C(n,n)]+[dC(n,1)+2dC(n,2)+…+(n-1)dC(n,n-1)+ndC(n,n)]
=a1*2^n+d[C(n,1)+2C(n,2)+…+(n-1)C(n,n-1)+nC(n,n)]
=a1*2^n+(1/2)d{nC(n,n)+[C(n,1)+(n-1)C(n,n-1)]+[2C(n,2)+(n-2)C(n-2)]+…+[(n-2)C(n,n-2)+2C(n,2)]+[(n-1)C(n,n-1)+C(n,1)]+nC(n,n)}
=a1*2^n+(1/2)d{nC(n,0)+nC(n,1)+nC(n,2)+…+nC(n,n-2)+nC(n,n-1)+nC(n,n)}
=a1*2^n+(1/2)dn{C(n,0)+C(n,1)+C(n,2)+…+C(n,n-2)+C(n,n-1)+C(n,n)}
=a1*2^n+(1/2)dn*2^n
=[a1+(1/2)dn]2^n
=n*2^n
要使上式恒成立,只要a1+(1/2)dn=n恒成立,
只要a1=n(1-d/2)恒成立,
所以当a1=0,d=2时可满足要求,
所以
an=2n-2为所求.
看了 是否存在等差数列{an}使a...的网友还看了以下:
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*) 2020-05-13 …
我们知道等比数列与等差数列在许多地方都有类似的性质,请由等差数列{an}的前n项和公式Sn=na1 2020-05-14 …
等差数列的数学题(1)等差数列的项数是2n其中奇数项和为90偶数项和为72且a1-a2n=33求该 2020-05-15 …
已知数列{an}的前n项和Sn,数列{bn}是公差为12的等差数列,且b4是b2与b6+1的等比中 2020-07-09 …
已知两个等差数列{an}与{bn},它的前n项和分别为Sn、S”n,已知Sn/S'n=n+3/n+ 2020-07-09 …
已知{an}是各项均为正数的等差数列,公差为d,对任意的n∈N+,bn是an和an+1的等比中项. 2020-07-10 …
已知等差数列{an}的前n项和为Sn,S10=0,且Sn≥-5对一切n∈N*恒成立,则此等差数列{ 2020-07-12 …
已知{an}是等差数列,公差为d,首项a1=3,前n项和为Sn.令cn=(?1)nSn(n∈N*) 2020-07-19 …
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则a1=(m−1)b− 2020-11-29 …
已知数列{a(n)}的前n项和为S(n),且满足a(1)=1,a(n+1)=S(n)+1(n∈N(+ 2021-02-09 …