早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f(x)具有连续的二阶可导,且f(0)二阶导=4,lim(x->0)f(x)/x=0,则lim(x->0)(1+f(x)/x)^1/x=?

题目详情
设f(x)具有连续的二阶可导,且f(0)二阶导=4,lim(x->0)f(x)/x=0,则lim(x->0)(1+f(x)/x)^1/x=?
▼优质解答
答案和解析
lim(x->0)f(x)/x=0,所以f(x)=0
lim(x->0)f(x)/x=lim(x->0)f'(x)=0,所以f'(x)=0
设L=lim(x->0)(1+f(x)/x)^1/x
ln(L)=lim(x->0)ln(1+f(x)/x)/x
=lim[x->0)(xf'(x)-f(x)]/[x^2+xf(x)]
=lim(x->0)f''(x)/[2+f(x)/x+f'(x)]
=2
所以L=e^2