早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形AnBnCnDn的面积为(15)n−1S

题目详情
(2012•铁岭)如图,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3…,若菱形A1B1C1D1的面积为S,则四边形AnBnCnDn的面积为
(
1
5
)n−1S或
S
5n−1
(
1
5
)n−1S或
S
5n−1
▼优质解答
答案和解析
∵H为A1B1的中点,F为C1D1的中点,
∴A1H=B1H,C1F=D1F,
又A1B1C1D1为菱形,∴A1B1=C1D1
∴A1H=C1F,又A1H∥C1F,
∴四边形A1HC1F为平行四边形,
∴S四边形A1HC1F=2S△HB1C1=2S△A1D1F
又S四边形A1HC1F+S△HB1C1+S△A1D1F=S菱形A1B1C1D1=S,
∴S四边形A1HC1F=
1
2
S,
又GD1=B1E,GD1∥B1E,
∴GB1ED1为平行四边形,
∴GB1∥ED1,又G为A1D1的中点,
∴A2为A1D2的中点,
同理C2为C1B2的中点,B2为B1A2的中点,D2为D1C2的中点,
∴HB2=
1
2
A1A2,D2F=
1
2
C1C2
又A1A2B2H和C1C2D2F都为梯形,且高与平行四边形A2B2C2D2的高h相等(设高为h),
下底与平行四边形A2B2C2D2的边A2D2与x相等(设A2D2=x),
∴S梯形A1A2B2H=S梯形C1C2D2F=
1
2
(x+
1
2
x)h=
3
4
xh,S平行四边形A2B2C2D2=xh,
即S梯形A1A2B2H:S梯形C1C2D2F:S平行四边形A2B2C2D2=3:3:4,
又S梯形A1A2B2H+S梯形C1C2D2F+S平行四边形A2B2C2D2=S四边形A1HC1F
∴S平行四边形A2B2C2D2=
2
5
S四边形A1HC1F=
1
5
S,
同理S四边形A3B3C3D3=(
1
5
2S,
以此类推得四边形AnBnCnDn的面积为(
1
5
n-1S或
S
5n−1

故答案为:(
1
5
n-1S或
S
5n−1