早教吧作业答案频道 -->数学-->
如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它
题目详情
如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.
▼优质解答
答案和解析
(1)证明:∵AF平分∠CAB,
∴∠CAF=∠EAD,
∵∠ACB=90°,
∴∠CAF+∠CFA=90°,
∵CD⊥AB于D,
∴∠EAD+∠AED=90°,
∴∠CFA=∠AED,又∠AED=∠CEF,
∴∠CFA=∠CEF,
∴CE=CF;
(2)猜想:BE′=CF.
证明:如图,过点E作EG⊥AC于G,连接EE′,
又∵AF平分∠CAB,ED⊥AB,EG⊥AC,
∴ED=EG,
由平移的性质可知:D′E′=DE,
∴D′E′=GE,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°
∵CD⊥AB于D,
∴∠B+∠DCB=90°,
∴∠ACD=∠B,
在△CEG与△BE′D′中,
,
∴△CEG≌△BE′D′(AAS),
∴CE=BE′,
由(1)可知CE=CF,
∴BE′=CF.
∴∠CAF=∠EAD,
∵∠ACB=90°,
∴∠CAF+∠CFA=90°,
∵CD⊥AB于D,
∴∠EAD+∠AED=90°,
∴∠CFA=∠AED,又∠AED=∠CEF,
∴∠CFA=∠CEF,
∴CE=CF;
(2)猜想:BE′=CF.
证明:如图,过点E作EG⊥AC于G,连接EE′,
又∵AF平分∠CAB,ED⊥AB,EG⊥AC,
∴ED=EG,
由平移的性质可知:D′E′=DE,
∴D′E′=GE,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°
∵CD⊥AB于D,
∴∠B+∠DCB=90°,
∴∠ACD=∠B,
在△CEG与△BE′D′中,
|
∴△CEG≌△BE′D′(AAS),
∴CE=BE′,
由(1)可知CE=CF,
∴BE′=CF.
看了 如图(1),Rt△ABC中,...的网友还看了以下:
椭圆X^2/a^2+y^2/b^2=1(a>b>0)与直线X+Y-1=0相交于P,Q且向量OP⊥向 2020-04-25 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
(“*”为未知数x)e*/a+a/e*=1/ae*+ae*为什么会等于(a-1/a)(1/e*-e 2020-06-07 …
这些音标到底怎么读1.e读A还是唉怎么有的读A有的读唉如果读A那和ei有什么不一样2.eu(e倒过 2020-06-30 …
已知向量a≠e,|e|=1,满足:任意t∈R.已知向量a不等于e,|e|=1,对任意t属于R,恒有 2020-07-25 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,证明:f(x)在(0,+无穷)上是增函数 2020-08-01 …
如何准确判断函数在某一区间内的零点个数,(要做哪些讨论)?例如:讨论f(x)=x2-alnx(a> 2020-08-02 …
设f(x)=ax^e+bx,且f'(-1)=1/e,f'(1)=e,求a+b 2020-11-01 …
已知函数f(x)=(ax-1)e^x,a属于全体实数,(2)若函数f(x)在区间(0,1)上单调增函 2020-11-17 …
英语单词排列以下字母排列成一个单词,1.e,n,a,l,r2.a,o,o,l,l,b,f,t3.i, 2020-12-24 …