早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列.(Ⅰ)求数列{an}的公比q;(Ⅱ)证明:ak,ak+6,ak+3(k∈N*)成等差数列.

题目详情
已知Sn是等比数列{an}的前n项和,S3,S9,S6成等差数列.
(Ⅰ)求数列{an}的公比q;
(Ⅱ)证明:ak,ak+6,ak+3(k∈N*)成等差数列.
▼优质解答
答案和解析
(Ⅰ)由S3,S9,S6成等差数列,可得2 S9=S3+S6
当q=1时,即得18a1=3a1+6a1,解得a1=0,不成立.…(3分)
当q≠1时,即得
2a1(1−q9)
1−q
a1(1−q3)
1−q
+
a1(1−q6)
1−q

整理得:2q6-q3-1=0,即2(q32-q3-1=0,
解得:q=1(舍去),或q=−
34
2
. …(7分)
(Ⅱ)证明:由(Ⅰ)知q3+1=2q6
ak+ak+3=a1qk−1+a1qk+2=a1qk−1(1+q3)=a1qk−1•2q6=2a1qk+5,
2ak+6=2a1qk+5,
∴ak+ak+3=2ak+6,即ak,ak+6,ak+3(k∈N*)成等差数列.…(12分)