早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求丨2X+6丨-4丨X+1丨+丨X-1丨的最大值

题目详情
求丨2X+6丨-4丨X+1丨+丨X-1丨的最大值
▼优质解答
答案和解析
令y=丨2X+6丨-4丨X+1丨+丨X-1丨
分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y的最大值,再加以比较,从中选出最大者.
有三个分界点:-3,1,-1.
(1)当x≤-3时,
y=-(2x+6)-(x-1)+4(x+1)=x-1,
由于x≤-3,所以y=x-1≤-4,y的最大值是-4.
(2)当-3≤x≤-1时,
y=(2x+6)-(x-1)+4(x+1)=5x+11,
由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.
(3)当-1≤x≤1时,
y=(2x+6)-(x-1)-4(x+1)=-3x+3,
由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.
(4)当x≥1时,
y=(2x+6)+(x-1)-4(x+1)=-x+1,
由于x≥1,所以1-x≤0,y的最大值是0.
综上可知,当x=-1时,y取得最大值为6.