(2013•苏州)如图,已知抛物线y=12x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)b=12+c12+c,点B的横坐标为
(2013•苏州)如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b=,点B的横坐标为______(上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有______个.
答案和解析
(1)∵抛物线y=
x2+bx+c过点A(-1,0),
∴0=×(-1)2+b×(-1)+c,
∴b=+c,
∵抛物线y=x2+bx+c与x轴分别交于点A(-1,0)、B(xB,0)(点A位于点B的左侧),
∴-1与xB是一元二次方程x2+bx+c=0的两个根,
∴-1•xB=,
∴xB=-2c,即点B的横坐标为-2c;
(2)∵抛物线y=x2+bx+c与y轴的负半轴交于点C,
∴当x=0时,y=c,即点C坐标为(0,c).
设直线BC的解析式为y=kx+c,
∵B(-2c,0),
∴-2kc+c=0,
∵c≠0,
∴k=,
∴直线BC的解析式为y=x+c.
∵AE∥BC,
∴可设直线AE得到解析式为y=x+m,
∵点A的坐标为(-1,0),
∴×(-1)+m=0,解得m=,
∴直线AE得到解析式为y=x+.
由,解得,,
∴点E坐标为(1-2c,1-c).
∵点C坐标为(0,c),点D坐标为(2,0),
∴直线CD的解析式为y=-x+c.
∵C,D,E三点在同一直线上,
∴1-c=-×(1-2c)+c,
∴2c2+3c-2=0,
∴c1=(与c<0矛盾,舍去),c2=-2,
∴b=+c=-,
∴抛物线的解析式为y=x2-x-2;
(3)①设点P坐标为(x,x2-x-2).
∵点A的坐标为(-1,0),点B坐标为(4,0),点C坐标为(0,-2),
∴AB=5,OC=2,直线BC的解析式为y=x-2.
分两种情况:
(Ⅰ)当-1<x<0时,0<S<S△ACB.
∵S△ACB=AB•OC=5,
∴0<S<5;
(Ⅱ)当0<x<4时,过点P作PG⊥x轴于点G,交CB于点F.
∴点F坐标为(x,x-2),
∴PF=PG-GF=-(x2-x-2)+(x-2)=-x2+2x,
∴S=S△PFC+S△PFB=PF•OB=(-x2+2x)×4=-x2+4x=-(x-2)2+4,
∴当x=2时,S最大值=4,
∴0<S≤4.
综上可知0<S<5;
②∵0<S<5,S为整数,
∴S=1,2,3,4.
分两种情况:
(Ⅰ)当-1<x<0时,设△PBC中BC边上的高为h.
∵点A的坐标为(-1,0),点B坐标为(4,0),点C坐标为(0,-2),
∴AC2=1+4=5,BC2=16+4=20,AB2=25,
∴AC2+BC2=AB2,∠ACB=90°,BC边上的高AC=.
∵S=BC•h,∴h===S.
如果S=1,那么h=×1=<,此时P点有1个,△PBC有1个;
如果S=2,那么h=×2=<,此时P点有1个,△PBC有1个;
如果S=3,那么h=×3=<,此时P点有1个,△PBC有1个;
如果S=4,那么h=×4=<,此时P点有1个,△PBC有1个;
即当-1<x<0时,满足条件的△PBC共有4个;
(Ⅱ)当0<x<4时,S=-x2+4x.
如果S=1,那么-x2+4x=1,即x2-4x+1=0,
∵△=16-4=12>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=2,那么-x2+4x=2,即x2-4x+2=0,
∵△=16-8=8>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=3,那么-x2+4x=3,即x2-4x+3=0,
∵△=16-12=4>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=4,那么-x2+4x=4,即x2-4x+4=0,
∵△=16-16=0,∴方程有两个相等的实数根,此时P点有1个,△PBC有1个;
即当0<x<4时,满足条件的△PBC共有7个;
综上可知,满足条件的△PBC共有4+7=11个.
故答案为+c,-2c;11.
已知抛物线y=ax^2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线 2020-04-05 …
如图已知抛物线y=ax²+bx+c(a>0)的顶点坐标为(3,—5),将此抛物线在x轴下方的部分沿 2020-05-13 …
1.抛物线与x轴的两个交点间的距离是3.且过点(0,-2),(2,0)求解析式2.已知抛物线过(( 2020-05-15 …
已知抛物线y=ax^2+bx+c,经过A(4,0)B(2,3)C(0,3)三点,(1)求抛物线的解 2020-05-15 …
已知抛物线y=ax^2+bx+c的顶点坐标为(2,1)这条抛物线与x轴的一个交点坐标(3,0)(1 2020-05-16 …
在平面直角坐标系x0y中,抛物线y=x2+bx+c与X轴交于A、B两点(点A在点B的左侧)与Y轴交 2020-05-16 …
抛物线y=ax²+bx+3与y轴交于点C,与x轴交于A、B两点,tan∠OCA=⅓,SΔABC=6 2020-05-16 …
直线y=1/2x+1与抛物线y=ax^2+bx-3交于A,B两点,点A在x轴上,点B的纵坐标为3, 2020-05-20 …
已知抛物线y=ax^2+bx(a不等于0)经过A(3,0),B(4,4)(1)求抛物线的解析式(2 2020-05-22 …
抛物线应用题已知:抛物线y=ax^2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,与 2020-07-11 …