早教吧作业答案频道 -->数学-->
如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.(1)求直线AM的函数解析式.(2)试在直线AM上找一点P,使得S
题目详情
如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴于点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)∵直线AB的函数解析式y=2x+12,
∴A(-6,0),B(0,12).
又∵M为线段OB的中点,
∴M(0,6).
∴直线AM的解析式y=x+6;
(2)设P点坐标(x,x+6),则|AP|=
|x+6|,B到直线AM的距离d=
=3
,
∴
×
|x+6|×3
=
×6×12,
解得:x=6或-18.
∴P(6,12)或P(-18,-12);
(3)存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形.
若以AM为底,BM为腰,过点B作AM的平行线,当点H的坐标为(-12,0)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以BM为底,AM为腰,过点A作BM的平行线,当点H的坐标为(-6,18)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以AB为底,BM为腰,过点M作AB的平行线,当点H的坐标为(-
,
)时,以A,B,M,H为顶点的四边形是等腰梯形.
故所求点H的坐标为(-12,0)或(-6,18)或(-
,
).
∴A(-6,0),B(0,12).
又∵M为线段OB的中点,
∴M(0,6).
∴直线AM的解析式y=x+6;
(2)设P点坐标(x,x+6),则|AP|=
2 |
|0−12+6| | ||
|
2 |
∴
1 |
2 |
2 |
2 |
1 |
2 |
解得:x=6或-18.
∴P(6,12)或P(-18,-12);
(3)存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形.
若以AM为底,BM为腰,过点B作AM的平行线,当点H的坐标为(-12,0)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以BM为底,AM为腰,过点A作BM的平行线,当点H的坐标为(-6,18)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以AB为底,BM为腰,过点M作AB的平行线,当点H的坐标为(-
6 |
5 |
18 |
5 |
故所求点H的坐标为(-12,0)或(-6,18)或(-
6 |
5 |
18 |
5 |
看了 如图,在平面直角坐标系中,函...的网友还看了以下:
1.直线y=ax+b和y=bx+a(a不等于b)交于x轴上同一点,则这个点的坐标为————.2.若 2020-05-16 …
已知:直线y=kx+k+4(k≠0)过点B(1,0),与y轴交于点C.(1)若点A(x,y)是直线 2020-07-26 …
如图1,抛物线y=-x2+6x与x轴交于O、A两点,点P在抛物线上,过点P的直线y=x+m与抛物线 2020-08-01 …
把直线y=-x+1沿y轴向下平移两个单位长度得直线的解析式是(),把直线y=-x+1沿y轴向把直线 2020-08-02 …
如图.过点A1(1,0)作x轴的垂线,交直线y=2x于点B1;点A2与点O关于直线A1B1对称,过点 2020-10-31 …
已知直线AB分别交x,y输于A(4,0),B两点,C(-4,a)为直线y=-x与直线AB的公共点.( 2020-11-01 …
如图,直线y=-x+b(b>0)与双曲线y=kx(x>0)交于A、B两点,连接OA、OB,AM⊥y轴 2020-11-01 …
关于初二函数直线Y=1/2+2分别交X.Y轴于点A.点C,点p是该直线上在第一项线上的一点,PB垂直 2020-11-04 …
已知梯形的四个顶点为A(2,5),B(2,3),C(6,3),D(6,7)及直线y=0.5x+b.2 2020-12-03 …
如图所示,直线y=-4/3x+4与y轴和x轴分别交于点A,点D,与直线y...如图所示,直线y=-4 2021-01-10 …