早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2012•包头)已知直线y=2x+4与x轴、y轴分别交于A,D两点,抛物线y=-12x2+bx+c经过点A,D,点B是抛物线与x轴的另一个交点.(1)求这条抛物线的解析式及点B的坐标;(2)设点M是直线AD上一点

题目详情
(2012•包头)已知直线y=2x+4与x轴、y轴分别交于A,D两点,抛物线y=-
1
2
x2+bx+c经过点A,D,点B是抛物线与x轴的另一个交点.
(1)求这条抛物线的解析式及点B的坐标;
(2)设点M是直线AD上一点,且S△AOM:S△OMD=1:3,求点M的坐标;
(3)如果点C(2,y)在这条抛物线上,在y轴的正半轴上是否存在点P,使△BCP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)令y=0,则2x+4=0,
解得x=-2,
令x=0,则y=4,
所以,点A(-2,0)、D(0,4);
代入抛物线y=-
1
2
x2+bx+c中,得:
1
2
×4−2b+c=0
c=4
,解得
b=1
c=4

∴抛物线的解析式:y=-
1
2
x2+x+4;
令y=0,得:0=-
1
2
x2+x+4,解得 x1=-2、x2=4
∴点B(4,0).

(2)∵S△AOM:S△OMD=1:3,∴AM:MD=1:3;
过点M作MN⊥x轴于N,如右图;
①当点M在线段AD上时,AM:AD=1:4;
∵MN∥OD,∴△AMN∽△ADO
∴MN=
1
4
OD=1、AN=
1
4
OA=
1
2
、ON=OA-AN=2-
1
2
=
3
2

∴M(-
3
2
,1);
②当点M在线段DA的延长线上时,AM:AD=1:2;
∵MN∥OD,∴△AMN∽△ADO
∴MN=
1
2
OD=2、AN=
1
2
OA=1、ON=OA+AN=3;
∴M(-3,-2);
综上,符合条件的点M有两个,坐标为:(-
3
2
,1)、(-3,-2).

(3)当x=2时,y=-
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号