早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(

题目详情
(2009•株洲)如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.
▼优质解答
答案和解析
(1)由B(3,m)可知OC=3,BC=m,又△ABC为等腰直角三角形,
∴AC=BC=m,OA=m-3,
∴点A的坐标是(3-m,0).

(2)∵∠ODA=∠OAD=45°∴OD=OA=m-3,则点D的坐标是(0,m-3).
又抛物线顶点为P(1,0),且过点B、D,
所以可设抛物线的解析式为:y=a(x-1)2
得:
a(3−1)2=m
a(0−1)2=m−3

解得
a=1
m=4

∴抛物线的解析式为y=x2-2x+1;

(3)证明:过点Q作QM⊥AC于点M,过点Q作QN⊥BC于点N,
设点Q的坐标是(x,x2-2x+1),
则QM=CN=(x-1)2,MC=QN=3-x.
∵QM∥CE
∴△PQM∽△PEC
QM
EC
PM
PC

(x−1)2
EC
x−1
2
,得EC=2(x-1)
∵QN∥FC
∴△BQN∽△BFC
QN
FC
BN
BC

3−x
FC
4−(x−1)2
4
,得FC=
4
x+1

又∵AC=4
∴FC(AC+EC)=
4
x+1
[4+2(x-1)]=
4
x+1
(2x+2)=
4
x+1
×2×(x+1)=8
即FC(AC+EC)为定值8.