早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF,垂足为H,BH的延长线分别交AC、CD于点G、P.(1)求证:AE=BG;(2)求证:GO•AG=CG•AO.

题目详情
已知正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF,垂足为H,BH的延长线分别交AC、CD于点G、P.
作业搜
(1)求证:AE=BG;
(2)求证:GO•AG=CG•AO.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠AHG=90°,
∵∠GAH+∠AGH=90°,∠OBG+∠AGH=90°,作业搜
∴∠GAH=∠OBG,
在△OAE和△OBG中,
∠OAE=∠OBG
OA=OB
∠AOE=∠BOG

∴△OAE≌△OBG(ASA),
∴AE=BG;
(2)∵△OAE≌△OBG,
∴OG=OE,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,AB∥CD
∴PC:AB=CG:AG,
∴PC:BC=CG:AG,
∵∠AHG=∠ABC=90°
∴∠FAB+∠ABH=∠CBP+∠ABH=90°,
∴∠FAB=∠CBP,
∵AF平分∠CAB,
∴∠FAC=∠FAB,
∴∠FAC=∠CBP,
∴Rt△OAE∽Rt△CBP,
∴OA:BC=OE:PC,
∵OE=OG,
即PC:BC=OG:OA,
∴OG:OA=CG:AG,
即GO•AG=CG•AO.