早教吧作业答案频道 -->数学-->
已知正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF,垂足为H,BH的延长线分别交AC、CD于点G、P.(1)求证:AE=BG;(2)求证:GO•AG=CG•AO.
题目详情
已知正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD、BC于点E、F,作BH⊥AF,垂足为H,BH的延长线分别交AC、CD于点G、P.
(1)求证:AE=BG;
(2)求证:GO•AG=CG•AO.
(1)求证:AE=BG;
(2)求证:GO•AG=CG•AO.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠AHG=90°,
∵∠GAH+∠AGH=90°,∠OBG+∠AGH=90°,
∴∠GAH=∠OBG,
在△OAE和△OBG中,
,
∴△OAE≌△OBG(ASA),
∴AE=BG;
(2)∵△OAE≌△OBG,
∴OG=OE,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,AB∥CD
∴PC:AB=CG:AG,
∴PC:BC=CG:AG,
∵∠AHG=∠ABC=90°
∴∠FAB+∠ABH=∠CBP+∠ABH=90°,
∴∠FAB=∠CBP,
∵AF平分∠CAB,
∴∠FAC=∠FAB,
∴∠FAC=∠CBP,
∴Rt△OAE∽Rt△CBP,
∴OA:BC=OE:PC,
∵OE=OG,
即PC:BC=OG:OA,
∴OG:OA=CG:AG,
即GO•AG=CG•AO.
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠AHG=90°,
∵∠GAH+∠AGH=90°,∠OBG+∠AGH=90°,
∴∠GAH=∠OBG,
在△OAE和△OBG中,
|
∴△OAE≌△OBG(ASA),
∴AE=BG;
(2)∵△OAE≌△OBG,
∴OG=OE,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCD=90°,AB∥CD
∴PC:AB=CG:AG,
∴PC:BC=CG:AG,
∵∠AHG=∠ABC=90°
∴∠FAB+∠ABH=∠CBP+∠ABH=90°,
∴∠FAB=∠CBP,
∵AF平分∠CAB,
∴∠FAC=∠FAB,
∴∠FAC=∠CBP,
∴Rt△OAE∽Rt△CBP,
∴OA:BC=OE:PC,
∵OE=OG,
即PC:BC=OG:OA,
∴OG:OA=CG:AG,
即GO•AG=CG•AO.
看了 已知正方形ABCD的对角线相...的网友还看了以下:
同阶无穷小量的表示方法?急!还有f(x)=O(g(x))是什么意思?老师说f(x)=h(x)g(x 2020-06-05 …
如图,AB是⊙O的直径,弦CD⊥AB,垂足是G,F是CG的中点,延长AF交⊙O于E,CF=2,AF 2020-06-19 …
已知:如图,在正方形ABCD中,AC与BD相交于O,点H在AB的延长线上,AH=AC,AG⊥CH, 2020-07-20 …
已知:如图,在正方形ABCD中,AC与BD相交于O,点H在AB的延长线上,AH=AC,AG⊥CH, 2020-07-20 …
问一个关于正四面体的向量问题正四面体O-ABC,自O作平面ABC的垂线,垂足为G有道题是这样说OG 2020-07-21 …
已知AB是⊙O的直径,C、E是⊙O上的点,CD⊥AB,EF⊥AB,垂足分别为D、F,过点E作EG⊥ 2020-07-30 …
一个有关大O(阶)的问题求两个单调递增函数f(n)和g(n)(n为自然数),f(n)≠O(g(n) 2020-07-31 …
已知AB是圆O的直径,C,E是圆上的点,CD垂直AB,EF垂直AB垂足分别为D,F过E作EG垂直OC 2020-11-27 …
已知四边形ABCD内接于O,对角线AC,BD交于点P.(1)如图1,设O的半径是r,若AB+CD=π 2020-11-27 …
如图,已知正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,过点A作AG⊥BE,垂足为G 2020-11-27 …