早教吧作业答案频道 -->数学-->
AD,BE是三角形的两条中线,并且AD垂直于BE,则角C的正弦最大值是多少该三角形为ABC,可能用正弦定理或者余弦定理做
题目详情
AD,BE是三角形的两条中线,并且AD垂直于BE,则角C的正弦最大值是多少
该三角形为ABC,可能用正弦定理或者余弦定理做
该三角形为ABC,可能用正弦定理或者余弦定理做
▼优质解答
答案和解析
因为∠CAB+∠CBA>∠DAB+∠EBA=90º,所以∠COE,在OD上截取OD'=OE,过A作AB'∥ED',交EB延长线于B',连接B'D'并延长交AC于C'.容易说明这时的C'AB'是个等腰三角形,可以看到三角形C'AB'也是符合题意的三角形,而且∠C'>∠C.这说明等腰三角形时,C可取得最大值
下面求最大的∠C,此时CA=CB,不妨设AB=2,那么ED=1
过D作DF∥EB,交AB延长线于F,可以看到ADF是等腰直角三角形,且AF=AB+BF=AB+ED=3,
所以三角形ADF底边上的高=AF/2=3/2
所以三角形CAB底边上的高CM=2*3/2=3
在直角三角形CMA中,CM=3,AM=1,可由勾股定理得到CA=√10
sin∠ACM=AM/AC=1/√10,cos∠ACM=CM/CA=3/√10
sin∠C=sin2∠ACM=2*1/√10*3/√10=3/5
下面求最大的∠C,此时CA=CB,不妨设AB=2,那么ED=1
过D作DF∥EB,交AB延长线于F,可以看到ADF是等腰直角三角形,且AF=AB+BF=AB+ED=3,
所以三角形ADF底边上的高=AF/2=3/2
所以三角形CAB底边上的高CM=2*3/2=3
在直角三角形CMA中,CM=3,AM=1,可由勾股定理得到CA=√10
sin∠ACM=AM/AC=1/√10,cos∠ACM=CM/CA=3/√10
sin∠C=sin2∠ACM=2*1/√10*3/√10=3/5
看了 AD,BE是三角形的两条中线...的网友还看了以下:
已知A、B为4阶矩阵,若满足AB+2B=0,r(B)=2,且行列式丨A+E丨=丨A-2E丨=0 , 2020-04-05 …
已知矩阵A可对角化,证明A的伴随矩阵也可对角化A可逆,如题 2020-04-06 …
定义在复数域上的N次方阵,满足A2+2A-3I=0,证明矩阵A可对角化,并求其相似对角阵 2020-06-16 …
1与-1是矩阵A=(31-2)的特征值,则当t=(),矩阵A可对角化.(-t-1t)(41-3)由 2020-07-17 …
设A=1-112-22-11-1问A能否对角化,若A可对角化,求P,并求A的n次方我知道先由|λE 2020-07-30 …
如图,已知∠A为定角,P,Q分别在∠A的两边上,PQ为定长.当P,Q处于什么位置时,△APQ的面积 2020-07-31 …
如图角A为定角a,P,Q分别在角A的两边上,PQ为定长m,则S△APQ的最大值 2020-07-31 …
x为何值时,矩阵A能对角化设矩阵A=001问x为何值时,A能对角化11x100书上的解答是:“求出 2020-07-31 …
已知矩阵A=1a−3−14−31−25的特征值有重根且A可对角化,求可逆矩阵P,使P-1AP为对角 2020-07-31 …
设B是m×n矩阵,BBT可逆,A=E-BT(BBT)-1B,其中E是n阶单位矩阵.(1)证明:AT= 2020-11-03 …