早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•虹口区一模)已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.(1)如图,当BP=1.5时,求CQ的长;(2

题目详情
(2014•虹口区一模)已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.

(1)如图,当BP=1.5时,求CQ的长;
(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;
(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.
▼优质解答
答案和解析
(1)由翻折性质,可知PE为∠BPQ的角平分线,且BE=FE.
∵点E为BC中点,
∴EC=EB=EF,
∴QE为∠CQP的角平分线.
∵AB∥CD,
∴∠BPQ+∠CQP=180°,即2∠EPQ+2∠EQP=180°,
∴∠EPQ+∠EQP=90°,
∴∠PEQ=90°,即PE⊥EQ.
易证△PBE∽△ECQ,
BP
EC
BE
CQ
,即
1.5
2
2
CQ

解得:CD=
8
3


(2)由(1)知△PBE∽△ECQ,
BP
EC
BE
CQ
,即
x
2
2
CQ

∴CQ=
4
x
,∴DQ=4-
4
x

∵QD∥AP,∴
DG
AG
DQ
AP
,又AP=4-x,AG=4+y,
y
4+y
4−
4
x
4−x

∴y=
16x−16
4−x2
(1<x<2).

(3)由题意知:∠C=90°=∠GFH.
①当点G在线段AD的延长线上时,如答图1所示.
由题意知:∠FHG=∠CQE
∵∠CQE=∠FQE,
∴∠DQG=∠FQC=2∠CQE=2∠G.
∵∠DQG+∠G=90°,
∴∠G=30°,
∴∠BEP=∠CQE=∠G=30°,
∴BP=BE•tan30°=
2
3
3


②当点G在线段DA的延长线上时,如答图2所示.
由题意知:∠FHG=∠CQE.
同理可得:∠G=30°,
∴∠BPE=∠G=30°,
∴∠BEP=60°,
∴BP=BE•tan60°=2
3

综上所述,BP的长为
2
3
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号
3