早教吧作业答案频道 -->数学-->
设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤(2).
题目详情
设a,b,c均为正数,且a+b+c=1,证明: (1)ab+bc+ca≤ (2) . |
▼优质解答
答案和解析
(1)见解析; (2)见解析. |
(1)由 得 . 由题设得 ,即 . 所以3(ab+bc+ca)≤1,即 . (2)因为 +b≥2a, +c≥2b, +a≥2c,故 +(a+b+c)≥2(a+b+c),即 ≥a+b+c,所以 . |
看了 设a,b,c均为正数,且a+...的网友还看了以下:
点A是函数y=2/x(x>0)图像上任意一点(一象限),过A点分别作x、y的平行线交函数y=1/x 2020-04-05 …
若a^2*(b-c)+b^2*(c-a)+c^2*(a-b)=0,求证:a、b、c三数中至少有两个 2020-04-27 …
已知a^2(b-c)+b^2(c-a)+c^2(a-b)=0,时说明a,b,c三数中至少有两个数相 2020-04-27 …
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
1.已知a、b互为相反数,c、d五位倒数,且x的绝对值是6试求x-(a+b-cd)^2+|(c+b 2020-05-17 …
已知三角形的三个顶点分别为A(6,-7),B(-2,3),C(2,1),求AC边上的中线所在的直线 2020-06-03 …
若a^2(b-c)+b^2(c-a)+c^2(a-b)=0,说明a,b,c三个数至少有两数相等. 2020-06-16 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
组合数题目求解下面这个式子:C(n-1,2)+2×C(n-2,2)+3×C(n-3,2)+……+( 2020-07-22 …
已知扇形的圆心角是α,所在圆的半径是R,若扇形的周长是一定值C(C>0)当α为多少弧度时,该扇形的 2020-07-26 …