早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若导函数等于零的方程无解怎么求原函数的单调区间和极值?原函数为f(x)=lnx+x

题目详情
若导函数等于零的方程无解怎么求原函数的单调区间和极值?
原函数为f(x)=lnx+x
▼优质解答
答案和解析
第1、看导函数是否连续,在原函数的定义域范围内,如果导函数不连续,原函数连续,那么其导函数间断点有可能是极值点,当然,也只是有可能.
第2、如果原函数连续,导函数也连续,导函数等于零的方程又无解,那么说明导函数的符号一直相同.这就说明原函数在整个定义域内都是单调函数.
f(x)=lnx+x的定义域是(0,+∞).在这个定义域下f‘(x)=(lnx)'+(x)'=(1/x)+1.
导函数在f(x)的定义域(0,+∞)下是连续的.且在此定义域下f‘(x)=(lnx)'+(x)'=(1/x)+1>0,那么f(x)在定义域(0,+∞)下单调递增.
其实这个根本不用麻烦的去算,一看就知道了.lnx在(0,+∞)下的单调递增的,x在实数范围内是单调递增的.那么两者之和当然在定义域范围内是单调递增的啦.