早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,点A、B分别在x轴、y轴上,且OA=OB,P为动点,且PA⊥PB.(1)如图①,P在第一象限时,求∠OPA的度数;(2)如图②,P在第四象限时,求∠OPA的度数;(3)在(2)的条件下,如图③,

题目详情
如图,点A、B分别在x轴、y轴上,且OA=OB,P为动点,且PA⊥PB.
(1)如图①,P在第一象限时,求∠OPA的度数;
(2)如图②,P在第四象限时,求∠OPA的度数;
(3)在(2)的条件下,如图③,过O作OE⊥BP于E,判断线段BP、AP、EO之间的数量关系,写出你的结论并证明.
作业搜
▼优质解答
答案和解析
(1)如图①,
∵OA=OB,∠AOB=90°,
∴∠OBA=45°,
∵PA⊥PB,作业搜
∴∠APB=90°,
∵∠AOB+∠APB=180°,
∴O、B、P、A四点共圆,
∴∠OPA=∠OBA=45°;
(2)如图②,过点O作OD⊥AB于点D,连接PD,
∵∠BOA=90°,BP⊥AP,
∴OD=BD=AD,
∴点D为AB的中点,
∴OD=DA=DB=PD,
∴O、B、P、A四点共圆,
∵∠OBA=45°,
∴∠OPA=135°.
(3)BP=AP+2EO,
证明:如图③,在BP上取点F使EF=EP,连接OF,作业搜
∵∠OPA=135°,
∴∠OPE=45°,
∵OE⊥BP,
∴OE=EP=EF,OF=OP,
∴∠FOP=90°,
∴∠AOP+∠FOA=∠BOP+∠FOA=90°,
∴∠AOP=∠BOP,
在△AOP和△BOF中,
OB=OA
∠AOP=∠BOP
OF=0P

∵△AOP≌△BOF,
∴BF=AP,
∴2EO+AP=FP+BF=BP,
即BP=AP+2EO.