早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2011•莱芜)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;

题目详情
(2011•莱芜)如图,在平面直角坐标系中,已知点A(-2,-4),OB=2,抛物线y=ax2+bx+c经过点A、O、B三点.
(1)求抛物线的函数表达式;
(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;
(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
(1)由OB=2,可知B(2,0),
将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,
-4=4a-2b+c
0=4a+2b+c
0=c

解得:a=-
1
2
,b=1,c=0
∴抛物线的函数表达式为y=-
1
2
x2+x.
答:抛物线的函数表达式为y=-
1
2
x2+x.

(2)由y=-
1
2
x2+x=-
1
2
(x-1)2+
1
2

可得,抛物线的对称轴为直线x=1,
且对称轴x=1是线段OB的垂直平分线,
连接AB交直线x=1于点M,M点即为所求.
∴MO=MB,则MO+MA=MA+MB=AB
作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=4
2

∴MO+MA的最小值为4
2

答:MO+MA的最小值为4
2


(3)①若OB∥AP,此时点A与点P关于直线x=1对称,
由A(-2,-4),得P(4,-4),则得梯形OAPB.
②若OA∥BP,
设直线OA的表达式为y=kx,由A(-2,-4)得,y=2x.
设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=-4,
∴直线BP的表达式为y=2x-4
y=2x-4
y=-
1
2
x
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号