早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求△BDE的面积;(3)求C′C的长.

题目详情
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积;
(3)求C′C的长.
▼优质解答
答案和解析
(1)△BDE是等腰三角形,
由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
即△BDE是等腰三角形;

(2)设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2
解得:x=4.875,
所以S△BDE=
1
2
DE×AB=
1
2
×4.875×4=9.75;

(3)在Rt△BCD中,BD=
42+82
=4
5

8×4÷4
5
=
8
5
5

8
5
5
×2=
16
5
5

故C′C的长为
16
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号