早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n在下感 2020-05-14 …
已知等差数列{an}满足a1+a(2n-1)=2n设Sn是数列{1/an}的前n项和,记f(n)= 2020-06-03 …
1、已知数列{An}满足:A1=1,A2=1/2,且[3+(-1)^n]A-2An+2[(-1)^ 2020-08-01 …
与limn→∞an=A不等价的一个命题是()A.∀ε>0,∃N∈N+,对于所有满足n≥N的n∈N+ 2020-08-02 …
设数列an满足a1=2,a(m+n)+a(m-n)-m+n=1/2(a2m+a2n)..设数列an满 2020-10-31 …
lim[cos(u/4n)+cos(3u/4n)+.+cos(2n-1)u/4n]/n这里n趋于无穷 2020-11-01 …
n阶方阵A满足A^2=O,E是n阶单位阵,则A.|E-A|≠0,但|E+A|=0B|E-An阶方阵A 2020-11-02 …
数列{an}满足a(1)=1,a(n+1)-3a(n)=3^n数列{bn}满足b(n)=3^(-n) 2020-11-20 …
关于数学集合设数集M={X满足于x大于等于m且小于等于(m+3/4)},N={x满足于(n-1/3) 2020-12-01 …
1.数列an满足a1=1,且Sn=2an+n,求数列an的通项公式.1.数列an满足a1=1,且Sn 2020-12-05 …