早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
写出画线部分读音与其他三个不同的单词.e的1.A.helpB.chessC.tentD.child 2020-05-14 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
设函数f(x)=e^(x-1)+a/x(1)若函数f(x)在x=1处有极值且g(x)=f(x)+b 2020-06-06 …
设函数f(x)=e^(x-1)+a/x(I)若函数f(x)在x=1处有极值,且函数g(x)=f(x 2020-06-06 …
矩阵(E+A)^n等于什么?看到一个二阶的矩阵n次方=E^n+n(E)^(n-1)A,三阶的n次方 2020-06-12 …
Q:不定积分∫e^x(1+a^x)dx 2020-07-11 …
高数求极限,谢谢设当x趋向于0时,e^x-(1+a^x)/(1-a^x)是x的三阶无穷小,求a和b 2020-07-12 …
设函数fx=x(e^x-1),a属于R,其中e为自然对数的底数,若a=1/2,求fx的单调递增区间 2020-08-02 …
求定积分被积函数1/[e^(at)+1],a为常数,积分限0到t. 2020-08-02 …
e^2x+1=a/2x=e^2x+1=a/2x= 2020-10-31 …