早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
设A,B为n阶矩阵,A可逆,B^2+BA+A^2=0,求证B和A+B是可逆矩阵,并求B,A+B的逆 2020-04-12 …
如果矩阵A可逆,那么行列式A的值是不是一定不等于零?如果矩阵A不可逆,那么行列式A的值是不是一定等 2020-05-15 …
矩阵A乘矩阵B等于零矩阵,矩阵A可逆,是否可以判断矩阵B为零矩阵,理由? 2020-05-15 …
设矩阵A可逆,证明其伴随阵A*也可逆,且(A*)-1=(A-1)*(A*)-1表示A*的逆矩阵,( 2020-06-18 …
设矩阵A=12−134−25−41,试判断矩阵A是否是可逆的,如果矩阵A可逆,求A-1. 2020-07-17 …
设A,B为n阶矩阵,A可逆,B^2+BA+A^2=0,求证B和A+B是可逆矩阵,并求B,A+B的逆矩 2020-11-02 …
若n阶方阵A满足A^2-2A+3E=0,则矩阵A可逆,且A的逆矩阵为多少?A(A-2)=-3E若n阶 2020-11-02 …
求证矩阵A可逆A不等于0,a的伴随矩阵等于a的转置矩阵,求证a可逆 2020-11-03 …
设矩阵A可逆,求证A的伴随矩阵也可逆,且求其伴随矩阵的逆矩阵和行列式 2020-11-03 …
设矩阵A可逆,且│A│=1,则A的伴随矩阵A*的逆矩阵是什么 2020-11-03 …