早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
一道关于矩阵可逆性的证明题:n阶矩阵A,B和A+B都可逆,证明A^(-1)+B(-1)也可逆,并求 2020-04-05 …
设A,B为n阶矩阵,且E-AB可逆,证明E-BA设A,B为n阶矩阵,且E-AB可逆,证明E-BA也 2020-04-05 …
关于求逆的.设方阵A满足方程A的平方-A-2E=O(opq的o欧),证明:A及A+2E均可逆,并求 2020-04-27 …
一道线性代数可逆证明已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆 2020-05-16 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
例设方阵A满足A2-A-2I=O,证明:例设方阵A满足A2(平方)-A-2I=O,证明:(1)A和 2020-06-18 …
线性代数的问题已知A和B都为n阶矩阵.证明:1,AB的迹和BA的迹相等.2,若A或B可逆,求证AB 2020-06-19 …
为什么“逆命题的反证法证明可看成否命题的直接证法”,请举例证明.有的书上说“逆命题的反证法证明可看 2020-07-12 …
如何证明分块矩阵是可逆的n阶矩阵p=(AB/0C),A,C为可逆矩阵,证明p可逆,并求可逆矩阵 2020-11-03 …
设A是阶矩阵,且满足A^3=2E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1当A^3=6 2020-11-03 …