早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
设四阶矩阵B=1−101000000−101−101,C=2102000034132102,且矩阵 2020-04-12 …
设A为4*3矩阵,B为3*4矩阵,若3阶矩阵C满足C^2-5C-(|AB|-7)E=0,其中E为3 2020-04-12 …
设3阶实对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于特 2020-05-14 …
判断题:1设A,B是同阶对称矩阵,则AB也是对称矩阵.()2设n阶方阵A,B,C满足关系式BCA= 2020-06-18 …
已知A,B为三阶方阵,且满足2A-1B=B-4E,其中E是3阶单位矩阵.(1)证明:矩阵A-2E可 2020-07-18 …
已知A是n阶方阵,且满足A2+A-2E=0(E是n阶单位矩阵)(1)证明A+E和A-3E可逆,并分 2020-07-21 …
设A,B为n阶矩阵,且满足2(B^-1)A=A-4E其中E为n阶单位矩阵,(1)证明:B-2E为可 2020-07-21 …
设A为n阶矩阵.若存在正整数m使Am=O,则称A为n阶幂零矩阵.现设A为n阶幂零矩阵,E为n阶单位 2020-07-22 …
设A为主对角线元素均为零的四阶实对称可逆矩阵,E为四阶单位矩阵B=0000000000k0000l 2020-08-02 …
试求矩阵B!设A,B为n阶矩阵,2A-B-AB=E,A^2=A,其中E为n阶单位矩阵.已知A=100 2021-02-05 …