早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
全集U=R,集合M={x|(x+4)(1-2x)>0},N={x|x2>=16,x属于R-}则集合 2020-04-05 …
已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则...A.I=A 2020-04-06 …
求解线性代数设A是n阶矩阵,⑴若A满足矩阵方程A²-A+I=O,证明:A和I-A都可逆,并求解线性 2020-05-14 …
是不是对于所有n×n的矩阵A,都可以有A^k的幂运算呢,那怎么保证A^(k-1)·A=A·A^(k 2020-06-10 …
如何用MATLAB构造满足某条件的N*(N-1)的列满秩矩阵I(n)=(1,.,1)是个1*n的向 2020-06-27 …
难于跑1000米.来看看哦M{a,b,c}N{1,0,-1}1求从M到N的映射个数,并一一列举2求 2020-07-30 …
设集合M={(x,y)|y=x,x,y属于R},M={(x,y)|x2+y2=0,x,y属于R}, 2020-08-02 …
与limn→∞an=A不等价的一个命题是()A.∀ε>0,∃N∈N+,对于所有满足n≥N的n∈N+ 2020-08-02 …
设M={X|f(x)=0}≠Φ,N={x|g(x)=0}≠Φ,P={X|f(x)g(x)=0}≠Φ, 2020-12-25 …
线性代数设n阶矩阵A满足关系式A^2+2A-3E=0则实数K满足什么条件时,A+kE是可逆的,并求它 2021-02-05 …