早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
设A,B分别为m,n阶可逆矩阵,B为m*n阶矩阵,证明矩阵AB0C可逆,并求逆 2020-05-14 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
线性代数定理求证明Q为n*n维方阵由(n-q)*n微矩阵D 和q*n维矩阵C构成则C左乘Q逆将图示 2020-05-16 …
线怀代数证明题.设n阶矩阵B满足B^2=B,I为n阶单位矩阵,证明:1,若B不等于I,则B不可逆2 2020-06-03 …
令N是所有n阶下三角非奇异复方阵的集合,D是主对角线上的元都是非零复数的n阶对角矩阵的集合,说明矩 2020-06-10 …
关于带权皇后矩阵一个问题的求解,求一个高效的算法就是n行n列的矩阵,从中选n个数,要求这n个数都不 2020-07-18 …
设A为一个n阶方阵,证明r(A^n)=r(A^n+1)=r(A^n+2)不要用若当标准型,也不要证 2020-07-31 …
已知一个矩阵,求矩阵的N次方的问题已知A=3-1-93求A^n为什么不能把A做初等变换再求A^n矩 2020-08-02 …
已知矩阵A为n级方阵(n>2),A*是A的伴随矩阵,求证当|A|=0时,(A*)*=0就是要证明当A 2020-11-20 …
设A=(aij)n×n,n>1,已知矩阵A的秩为1,且a11+a22+…+ann=1,(1)求矩阵A 2021-02-10 …