早教吧作业答案频道 -->数学-->
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
题目详情
若n阶矩阵A满足A^n=0,证明:E-A可逆,并求(E-A)^(-1)
▼优质解答
答案和解析
A^n=0
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
那么
E-A^n=E,
即
(E-A)(E+A+A^2+A^3+…+A^n-1)=E
所以E-A是可逆的,
且
(E-A)^(-1)= E+A+A^2+A^3+…+A^n-1
看了若n阶矩阵A满足A^n=0,证...的网友还看了以下:
1,P(A)=0.4P(AB)=0.2P(A|B)+P(A非|B非)=1求P(A并B)2,证明若P 2020-06-14 …
概率论与数理统计里的一道证明题设本题涉及的事件均有意义,设A,B都是事件.1.已知P(A)>0,证 2020-06-18 …
一道高等代数关于迹Tr的问题(1)证明,若一复方阵的所有特征值全为0,则A为幂零矩阵;(2)证明对 2020-06-19 …
已知函数f(x)=logmx−3x+3(1)判断f(x)的奇偶性并证明;(2)若f(x)的定义域为 2020-06-25 …
两个高数问题中数列极限的问题,要用定义证明,(1)设数列{Xn}有界 ,又lim(n->∞)Yn= 2020-06-27 …
高数证明limsinx=0证明:当x趋近于0时limsinx=0中,提到绝对值sinx小于或等于绝 2020-07-30 …
设f(x),g(x)是数域F上的多项式,且a,b,c,d∈F,若ad-bc≠0,证明(af(x)设 2020-07-31 …
若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定若A是 2020-07-31 …
请用反证法证明,若0 2020-08-01 …
证明若任意xy属于R有fx+y=fx+fy,且fx在0连续,则函数fx在R上连续,且证明若任意xy属 2020-11-01 …