早教吧作业答案频道 -->数学-->
如图,矩形ABCD中,AD=6,CD=6+22,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是
题目详情
如图,矩形ABCD中,AD=6,CD=6+2
,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是___.
| 2 |
▼优质解答
答案和解析
如图过点G作MN⊥AB垂足为M,交CD于N,作GK⊥BC于K.
∵四边形EFGH是矩形,
∴GH=EF,GH∥EF,∠A=90°,
∴∠DNM+∠NMA=90°,
∴∠AMN=∠DNM=90°,
∵CD∥AB,
∴∠NHG=∠AFE,
在△HNG和△FAE中,
,
∴△HNG≌△FAE,
∴AE=NG=2,ED=GM=4,
∵四边形NGKC、四边形GMBK都是矩形,
∴CK=GN=2,BK=MG=4,
当∠CGB=90°时,∵△CGK∽△GBK,
∴
=
,
∴GK=MB=CN=2
,
∴DN=AM=AB-MB=6,
∴四边形AMND是正方形,设AF=x,则FM=6-x,
∵△AEF∽△MFG,
∴
=
,
∴
=
∴x2-6x+8=0,
∴x=2或4.
∴AF=2或4.
故答案为2或4
∵四边形EFGH是矩形,
∴GH=EF,GH∥EF,∠A=90°,
∴∠DNM+∠NMA=90°,
∴∠AMN=∠DNM=90°,
∵CD∥AB,
∴∠NHG=∠AFE,
在△HNG和△FAE中,
|
∴△HNG≌△FAE,
∴AE=NG=2,ED=GM=4,
∵四边形NGKC、四边形GMBK都是矩形,
∴CK=GN=2,BK=MG=4,
当∠CGB=90°时,∵△CGK∽△GBK,
∴
CK |
GK |
GK |
BK |
∴GK=MB=CN=2
2 |
∴DN=AM=AB-MB=6,
∴四边形AMND是正方形,设AF=x,则FM=6-x,
∵△AEF∽△MFG,
∴
AE |
MF |
AF |
MG |
∴
2 |
6-x |
x |
4 |
∴x2-6x+8=0,
∴x=2或4.
∴AF=2或4.
故答案为2或4
看了 如图,矩形ABCD中,AD=...的网友还看了以下:
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x) 2020-05-14 …
设f(X),g(x)都在[a,b]上连续,且在(a,b)内可微分,中值定理设f(X),g(x)都在 2020-07-13 …
一道关于元素周期律的题短周期元素X、Y.X的原子序数小于Y的原子序数,二者可以形成两种气态化合物A 2020-07-16 …
已知抛物线C:y=(x+1)^2与圆M:(x-1)^2+(y-1/2)^2=r^2有一个公共点A, 2020-07-20 …
83页同济6有句{如果函数在开区间ab上可导,且在a点右连续,b点作连续.就说在闭区间ab上连续. 2020-08-01 …
1设函数f(x)为奇函数,且在(0,+∞)上是减函数,试证函数f(x)在(-∞,0)上是减函数2设 2020-08-01 …
我有几个数学题,有没有高手帮忙解答呀1.设函数f(x),g(x)在[a,b]上连续,且在[a,b]区 2020-10-30 …
在平地上有A,B两点,A在上的正东,B在上的东南,且在A的南25°西300米在a侧山顶的仰角是30度 2020-11-02 …
请大家讨论一个概率题某校高三某班在一次体育课内进行定点的投篮,A,B为两个定点投篮位置,在A处投中一 2020-12-23 …
某校高三某班在一次体育课内进行定点投篮赛,A、B为两个定点投篮位置,在A处投中一球得2分,在B处投中 2020-12-30 …