早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的

题目详情
如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E处,连结BE.
(1)求证:∠BAE=2∠CBE;
(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论;
(3)若AB=5,BC=3,直接写出BG的长
2
13
2
13

▼优质解答
答案和解析
(1)证明:∵四边形ABCD是矩形,
∴∠C=∠CBA=90°,
∴∠CBE+∠ABE=90°,
∵将矩形ABCD绕点A顺时针旋转至矩形A点正好落在CD上的点E处,
∴BC=AG,∠EAG=90°,AE=AB,
∴∠ABE=∠AEB,
∵∠BAE+∠ABE+∠AEB=180°,
∴2∠ABE+∠BAE=180°,
∵∠CBE+∠ABE=90°,
∴2∠CBE+2∠ABE=180°,
∴∠BAE=2∠CBE.

(2)MN=
1
2
AF,
证明:过B作BO⊥AE于O,连接EG,
∵四边形AEFG是矩形,
∴AF=EG,∠MAG=∠BOM=90°,
∵∠C=∠CBA=90°,
∴∠AEB=∠ABE=90°-∠CBE,∠CEB=90°-∠CBE,
∴∠CEB=∠OEB,
在△CBE和△OBE中
∠CBE=∠OBE
∠C=∠BOE=90°
BE=BE

∴△CBE≌△OBE(AAS),
∴EC=OE,BO=BC=AD=AG,
在△BOM和△GAM中
∠AMG=BME
∠BOM=∠GAM
BO=AG

∴△BOM≌△GAM(AAS),
∴BM=GM,
∵点N为BE的中点,
∴MN=
1
2
EG,
∵EG=AF,
∴MN=
1
2
AF.

(3)在Rt△DEA中,∠EDA=90°,AD=BC=3,AE=AB=5,由勾股定理得:DE=4,
∵△BOM≌△GAM,△CBE≌△OBE,
∴OM=AM,EC=EO,
∴OM=
AE-OE
2

=
AB-EC
2

=
ED
2

=
4
2

=2,
在Rt△BOM中,由勾股定理得:BM=
BO2+OM2
=
32+22
=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号