早教吧作业答案频道 -->数学-->
已知函数f(x)=xlnx;(Ⅰ)函数g(x)=-ax+f(x)的单调区间;(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.
题目详情
已知函数f(x)=xlnx;
(Ⅰ)函数g(x)=-ax+f(x)的单调区间;
(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.
(Ⅰ)函数g(x)=-ax+f(x)的单调区间;
(Ⅱ)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.
▼优质解答
答案和解析
(Ⅰ)由于函数g′(x)=(-ax)′+f′(x)=-a+1+lnx,其定义域为(0,+∞)
令g′(x)>0,x>ea-1,令g′(x)<0,0<x<ea-1,
则函数g(x)的单调增区间为(ea-1,+∞),
函数g(x)的单调减区间为(0,ea-1);
(Ⅱ))因为f(x)=xlnx,所以f(x)+x-k(x-1)>0对任意x>1恒成立,
即k(x-1)<x+xlnx,
因为x>1,
也就是k<
对任意x>1恒成立.
令h(x)=
,
则h′(x)=
,
令φ(x)=x-lnx-2(x>1),
则φ′(x)=1−
=
>0,
所以函数φ(x)在(1,+∞)上单调递增.
因为φ(3)=1-ln3<0,φ(4)=2-2ln2>0,
所以方程φ(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,φ(x)<0,
即h′(x)<0,当x>x0时,φ(x)>0,即h′(x)>0,
所以函数h(x)=
在(1,x0)上单调递减,
在(x0,+∞)上单调递增.
所以[h(x)]min=h(x0)=
=
=x0∈(3,4).
所以k<[g(x)]min=x0
因为x0∈(3,4).
故整数k的最大值是3.
令g′(x)>0,x>ea-1,令g′(x)<0,0<x<ea-1,
则函数g(x)的单调增区间为(ea-1,+∞),
函数g(x)的单调减区间为(0,ea-1);
(Ⅱ))因为f(x)=xlnx,所以f(x)+x-k(x-1)>0对任意x>1恒成立,
即k(x-1)<x+xlnx,
因为x>1,
也就是k<
x•lnx+x |
x−1 |
令h(x)=
x•lnx+x |
x−1 |
则h′(x)=
x−lnx−2 |
(x−1)2 |
令φ(x)=x-lnx-2(x>1),
则φ′(x)=1−
1 |
x |
x−1 |
x |
所以函数φ(x)在(1,+∞)上单调递增.
因为φ(3)=1-ln3<0,φ(4)=2-2ln2>0,
所以方程φ(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,φ(x)<0,
即h′(x)<0,当x>x0时,φ(x)>0,即h′(x)>0,
所以函数h(x)=
x•lnx+x |
x−1 |
在(x0,+∞)上单调递增.
所以[h(x)]min=h(x0)=
x0(1+inx0) |
x0−1 |
x0(1+x0−2) |
(x0−1) |
所以k<[g(x)]min=x0
因为x0∈(3,4).
故整数k的最大值是3.
看了 已知函数f(x)=xlnx;...的网友还看了以下:
已知1/3≤a≤1,若函数f(x)=ax²-2x+1在区间[1,3]上的最大值为M(a),最小值为 2020-04-06 …
已知函数f(x)=2/x+alnx-2(1)若函数y=f(x)在点P(1,f(1))处的切线与直线 2020-06-08 …
速求,已知函数f(x)=2sin(2wx—pai/6)(w>0)的图像与两个相邻交点之间的距离为p 2020-08-01 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)分别是f( 2020-08-01 …
已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f′(x)和g′(x)是f(x) 2020-08-01 …
设g(x)=(a-1)x-bf(x),其中f(x)=ln(x+1),a>0,且g(e-1)=(b- 2020-08-02 …
已知常数a(a大于0),e为自然对数的底数,函数f(x)=e^x-x,g(x)=x^2-aInx. 2020-08-02 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
若f(x)和g(x)在区间[a,b]上可导,且(g(x)的导数)不等于0.则存在一个nin(a,b) 2020-11-20 …
已知函数f(x)与g(x)在区间[a,b]上都有意义,且在此区间上满足已知函数f(x)与g(x)在区 2020-12-08 …