早教吧作业答案频道 -->数学-->
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,(1)求证:数列an/2^n是等差数列;(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
题目详情
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,
(1)求证:数列an/2^n是等差数列;
(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
(1)求证:数列an/2^n是等差数列;
(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
▼优质解答
答案和解析
题目写漏个2吧=_+【a(n+1)=2an+2^n】
证明:
⑴
∵a(n+1)=2an+(2^n)
∴a(n+1)-2an=2^n
∴[a(n+1)-2an]/[2^(n+1)]=[a(n+1)/2^(n+1)]-[an/(2^n)]=(2^n)/[2^(n+1)]=1/2
∴数列{an/2^n}是以首项为a1/2=1/2,公差为1/2的等差数列
⑵
由⑴知:
an/(2^n)=1/2+(n-1)×1/2=1/2n
∴an=(1/2n)×(2^n)=n•2^(n-1)
∴Sn=1•(2^0)+2•(2^1)+3•(2^2)+……+(n-1)•2^(n-2)+n•2^(n-1)
则2Sn= 1•(2^1)+2•(2^2)+3•(2^3)+………………+(n-1)•2^(n-1)+n•(2^n)
两式相减,得:
Sn=n•(2^n)-(1+2+2^2+……+2^(n-1))=n•(2^n)-[ [1(1-(2^n)]/(1-2) ]=n•(2^n)-(2^n)+1=(2^n)(n-1)+1
∴S(n+1)-4an=[2^(n+1)]•n+1-[n•2^(n+1)]=1.
证明:
⑴
∵a(n+1)=2an+(2^n)
∴a(n+1)-2an=2^n
∴[a(n+1)-2an]/[2^(n+1)]=[a(n+1)/2^(n+1)]-[an/(2^n)]=(2^n)/[2^(n+1)]=1/2
∴数列{an/2^n}是以首项为a1/2=1/2,公差为1/2的等差数列
⑵
由⑴知:
an/(2^n)=1/2+(n-1)×1/2=1/2n
∴an=(1/2n)×(2^n)=n•2^(n-1)
∴Sn=1•(2^0)+2•(2^1)+3•(2^2)+……+(n-1)•2^(n-2)+n•2^(n-1)
则2Sn= 1•(2^1)+2•(2^2)+3•(2^3)+………………+(n-1)•2^(n-1)+n•(2^n)
两式相减,得:
Sn=n•(2^n)-(1+2+2^2+……+2^(n-1))=n•(2^n)-[ [1(1-(2^n)]/(1-2) ]=n•(2^n)-(2^n)+1=(2^n)(n-1)+1
∴S(n+1)-4an=[2^(n+1)]•n+1-[n•2^(n+1)]=1.
看了 在数列an中,a1=1,且对...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
当n为正整数时,定义函数N(n)表示n的最大奇因数.如N(3)=3,N(10)=5,….记S(n) 2020-05-13 …
二次函数y=n(n+1)X^2-(2n+1)X+1 ,n=1,2,3.时,其图像在X轴上截得线段长 2020-05-16 …
1、等比数列中,知道a3=1,S3=13,怎么得出q=1/3?2、已知nS(n+1)>(n+1)S 2020-06-04 …
在(n+1)=n^2+2n+1中,当n=1,2,3……这些正整数时,可以得到n个等式将这些等式在( 2020-06-10 …
如果对于任意给定的正数总存在一个正整数N,当n>N证:对于任意给定的e>0,要使|yn-2|=|2 2020-07-09 …
小明写自然数从1写到N,所写下的数的数字之和是28035.则N=.请注意:不是1加到N的和,而是1 2020-07-20 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
二项式定理证明:(1)Cn0+Cn2+Cn4+……+Cnn=2^(n-1)(n为偶数)(2)Cn1 2020-07-31 …
已知数列an满足1/a1+1/a2+1/a3+...+1/an=n^2(n≥1,n∈n*)bn=an 2020-11-19 …