早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD,AB=1,SB=3.(1)求证:BC⊥SC;(2)求面ASD与面BSC所成二面角的大小.

题目详情
如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)求面ASD与面BSC所成二面角的大小.
▼优质解答
答案和解析
(1)证明:∵底面ABCD是正方形,∴BC⊥DC.
∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,
∴BC⊥平面SDC,∴BC⊥SC;
(2)∵SD⊥底面ABCD,且ABCD为正方形,
∴可把四棱锥S-ABCD补形为长方体A1B1C1S-ABCD,
如图2,面ASD与面BSC所成的二面角就是面ADSA1与面BCSA1所成的二面角,
∵SC⊥BC,BC∥A1S,∴SC⊥A1S,
又SD⊥A1S,∴∠CSD为所求二面角的平面角.
在Rt△SCB中,由勾股定理得SC=
2

在Rt△SDC中,由勾股定理得SD=1.
∴∠CSD=45°,即面ASD与面BSC所成的二面角为45°.
看了 如图,S是正方形ABCD所在...的网友还看了以下: