早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•青山湖区模拟)已知平行四边形ABCD(如图1)中,AB=4,BC=5,对角线AC=3,将三角形△ACD沿AC折起至△PAC位置(图2),使二面角P-AC-B为60°,G,H分别是PA,PC的中点.(Ⅰ)求证:PC⊥平

题目详情
(2014•青山湖区模拟)已知平行四边形ABCD (如图1)中,AB=4,BC=5,对角线AC=3,将三角形△ACD沿AC折起至△PAC位置(图2),使二面角P-AC-B为60°,G,H分别是PA,PC的中点.
(Ⅰ)求证:PC⊥平面BGH;
(Ⅱ)求平面PAB与平面BGH夹角的余弦值.
▼优质解答
答案和解析
(Ⅰ)证明:过C作CE∥AB,且CE=AB,连结BE,PE,
∵AC2+AB2=BC2,∴AC⊥AB,
∴四边形ABCD是矩形,AC⊥CE,
∵PC⊥AC,∴AC⊥平面PEC,
∴∠PCE=60°,
∵PC=CE=4,∴△PCB是正三角形,
∵BE∥AC,∴BE⊥平面PEC,
∴BE⊥PE,∴PB=
PE2+BE2
=5=BC,
而H是PC的中点,∴BH⊥PC,
∵G,H是△PAC的中位线,
∴GH∥AC,∴GH⊥PC,
∵GH∩BH=H,
∴PC⊥平面BGH.
(Ⅱ)以CE的中点O为原点,建立如图所示的空间直角坐标系,
由题意知A(3,-2,0),B(3,2,0),P(0,0,2
3
),C(0,-2,0),
PA
=(3,−2,−2
3
),
PB
=(3,2,-2
3
),
PC
=(0,−2,−2
3
),
设平面PAB的法向量
作业帮用户 2017-11-14