早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道数学题的两种解法,麻烦大家帮我想一下哪种解法是正确的,另一种有错在哪?设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,则不等式f(x)+f(-2)>1的解集是?解法一:f(x

题目详情
一道数学题的两种解法,麻烦大家帮我想一下哪种解法是正确的,另一种有错在哪?
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,则不等式f(x)+f(-2)>1的解集是?
解法一:f(x)+f(-2)=f(-2x)>f(3)
∵f(x)是定义在R上的增函数
∴-2x>3,解得:x<-3/2
解法二:f(3)=f(-3/2)+f(-2)
∵f(x)+f(-2)>f(-3/2)+f(-2)
∴f(x)>f(-3/2)
又 ∵f(x)是定义在R上的增函数
所以x>-3/2
▼优质解答
答案和解析
其实是题目有问题,
f(xy)=f(x)f(y)得到的函数式f(x)=ln(cx),c为常数,不可能定义在R上的增函数
很简单就可以验证,令x=0.,y=3,得到f(0)=f(0)+1,明显是矛盾的
两种解法都是没有问题的,问题出在题目