早教吧作业答案频道 -->数学-->
线性代数1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.3.设A为n阶矩阵,且A²
题目详情
线性代数
1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!
2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.
3.设A为n阶矩阵,且A²=A,证明:R(A)+R(A-E)=n.
1.设α1,α2,…,αs的秩为r且其中每个向量都可以由α1,α2,…αr线性表示,证明:α1,α2…,αr为α1,α2,…,αs的一个极大无关组!
2.设A,B都是n阶矩阵,且AB=0,证明R(A)+R(B)≤n.
3.设A为n阶矩阵,且A²=A,证明:R(A)+R(A-E)=n.
▼优质解答
答案和解析
1、只要证明了α1,α2…,αr线性无关即可.
由已知条件,向量组α1,α2,…,αs与向量组α1,α2,…αr等价,所以等秩,所以α1,α2,…,αr的秩是r,所以α1,α2,…αr线性无关.
所以α1,α2…,αr为α1,α2,…,αs的一个极大无关组.
2、设B=(b1,b2,...,bn),则AB=A(b1,b2,...,bn)=(Ab1,Ab2,...,Abn)=0,所以Abi=0(i=1,2,...,n),所以向量组b1,b2,...,bn可以由Ax=0的一组基础解系a1,a2,...,as线性表示,其中s=n-R(A).所以向量组b1,b2,...bn的秩R(B)≤n-R(A),所以R(A)+R(B)≤n.
3、首先,A²-A=A(A-E)=0,由第二题得R(A)+R(A-E)≤n.
其次,R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n.
所以,R(A)+R(A-E)=n.
由已知条件,向量组α1,α2,…,αs与向量组α1,α2,…αr等价,所以等秩,所以α1,α2,…,αr的秩是r,所以α1,α2,…αr线性无关.
所以α1,α2…,αr为α1,α2,…,αs的一个极大无关组.
2、设B=(b1,b2,...,bn),则AB=A(b1,b2,...,bn)=(Ab1,Ab2,...,Abn)=0,所以Abi=0(i=1,2,...,n),所以向量组b1,b2,...,bn可以由Ax=0的一组基础解系a1,a2,...,as线性表示,其中s=n-R(A).所以向量组b1,b2,...bn的秩R(B)≤n-R(A),所以R(A)+R(B)≤n.
3、首先,A²-A=A(A-E)=0,由第二题得R(A)+R(A-E)≤n.
其次,R(A)+R(A-E)=R(A)+R(E-A)≥R(A+E-A)=R(E)=n.
所以,R(A)+R(A-E)=n.
看了 线性代数1.设α1,α2,…...的网友还看了以下:
1,一条光线从点M(5,3)射出,被直线L:x+y=1反射,入射光线与L的夹角为β,且tanβ=2, 2020-03-30 …
无限长直导线ab中的电流r沿导线向上,并以dI/dt=2A/s的变化率均匀增大,导线附近放一个与之 2020-04-25 …
10.已知双曲线x²/a²-y²/b²=1(a>0,b>0)与抛物线y²=8x有一个公共的焦点F, 2020-05-13 …
(2013•普陀区二模)如图,抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A、B, 2020-05-13 …
已知双曲线x^2/a^2-y^2/b^2=1(a>b>0)的左右两个焦点1,已知双曲线x^2/a^ 2020-05-13 …
哪位大神能告诉我一下,三年级有一个直线为什么比曲线短的一句知识,那句话是什么? 2020-05-14 …
正方形的一个顶点为A(-1,0),一边所在直线的方程为x+3y-5=0正方形的一个顶点为A(-1, 2020-05-16 …
一个关于抛物线和椭圆的问题抛物线顶点在原点,它的准线过椭圆X^2/a^2+Y^2/b^2=1(a> 2020-06-21 …
平面上过某一点A的k条不重合的直线称为关于点A的直线簇,并且此时称k为该直线簇的阶.若A、B是平面 2020-07-01 …
一个底线为2米高0.5米的圆弧形他的半经和弧长该如何计算拜托各位大神一个圆弧形两点间的长度为2米弧 2020-07-02 …