早教吧作业答案频道 -->其他-->
(2014•昆都仑区一模)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE、CF、EF,有下列四个结论:①△CDF≌△EBC;②∠CDF=∠E
题目详情
(2014•昆都仑区一模)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A,E之间,连接CE、CF、EF,有下列四个结论:
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.
其中正确的结论的个数是______个.
①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.
其中正确的结论的个数是______个.
▼优质解答
答案和解析
在▱ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
,
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③,共3个.
故答案为:3.
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
|
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③,共3个.
故答案为:3.
看了 (2014•昆都仑区一模)如...的网友还看了以下:
数学关于四点共圆的问题.1M为圆O的弦AB中点,弦CD和弦EF都过点M,CF交AB于点G.ED交A 2020-06-04 …
如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是 2020-06-15 …
如图是磅秤构造的示意图.AB是一根不等臂的杠杆,支点为O1,CD和EF都是可看作为杠杆的两块平板, 2020-06-26 …
如图是磅秤构造的示意图.AB是一根不等臂的杠杆,支点为O1,CD和EF都是可看作为杠杆的两块平板, 2020-06-26 …
如图是磅秤构造的示意图.AB是一根不等臂的杠杆,支点为O1,CD和EF都是可看作为杠杆的两块平板, 2020-06-26 …
如图,三角形ABC中,D是BC中点,E是AB上任意一点,且DE垂直于DF,交AC于点F,连接EF, 2020-06-27 …
如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠ 2020-07-21 …
在证明三角形中位线性质“如图,已知EF是△ABC的中位线,求证:EF∥BC,EF=12BC”时,小 2020-08-01 …
如图,在三角形ABC中,角BAC=90度,AB=AC,D是BC中点,点E、F分别在AC、AB上,且A 2020-11-03 …
如图所示,AB、CD为两根平行且均匀的相同电阻丝,直导线EF可以在AB、CD上滑行并保持与AB垂直, 2020-11-04 …