早教吧作业答案频道 -->数学-->
“欧拉拓扑”公式能运用在哪些地方?实际用途
题目详情
“欧拉拓扑”公式能运用在哪些地方?实际用途
▼优质解答
答案和解析
欧拉公式主要是理论方面的研究运用,实际上比较少用,是三角函数和指数函数的关系.在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做
欧拉公式,它们分散在各个数学分支之中.
(1)分式里的欧拉公式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复变函数论里的欧拉公式:
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.
这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作∏就得到:
e^i∏+1=0.
这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.
(3)三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)拓扑学里的欧拉公式:
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.
如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h.
X(P)叫做P的拓扑不变量,是拓扑学研究的范围.
(5)初等数论里的欧拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数.n是一个正整数.
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等.则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
利用容斥原理可以证明它.
此外还有很多著名定理都以欧拉的名字命名.
欧拉公式,它们分散在各个数学分支之中.
(1)分式里的欧拉公式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复变函数论里的欧拉公式:
e^ix=cosx+isinx,e是自然对数的底,i是虚数单位.
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.
将公式里的x换成-x,得到:
e^-ix=cosx-isinx,然后采用两式相加减的方法得到:
sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.
这两个也叫做欧拉公式.将e^ix=cosx+isinx中的x取作∏就得到:
e^i∏+1=0.
这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0.数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它.
(3)三角形中的欧拉公式:
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)拓扑学里的欧拉公式:
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数.
如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h.
X(P)叫做P的拓扑不变量,是拓扑学研究的范围.
(5)初等数论里的欧拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数.n是一个正整数.
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm*am,其中众pj(j=1,2,……,m)都是素数,而且两两不等.则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
利用容斥原理可以证明它.
此外还有很多著名定理都以欧拉的名字命名.
看了 “欧拉拓扑”公式能运用在哪些...的网友还看了以下:
复变函数中的欧拉公式定义域1、欧拉公式中e^(ix)=cosx+isinx,这里的X是只能取实数不 2020-04-26 …
欧位在1748年给出的著名公式eiθ=cosθ+isinθ(欧拉公式)是数学中最卓越的公式之一,其 2020-07-03 …
欧阳修纂修《唐书》欧阳公子修《唐书》,最后至局①,专任纪志而已,列传则宋尚书祁所修.朝廷以一书出两 2020-07-25 …
《欧阳修苦读》的一些问题1、解释下列句子中加点字的含义(1)教以书字·(2)或因而抄录·2、从欧阳 2020-07-26 …
欧拉公式推论,由欧拉公式e^(i*pi)=-1,其中pi是圆周率,两边平方后在取对数得2i*pi= 2020-07-30 …
欧拉公式eiθ=cosθ+isinθ(e为自然对数的底数,i为虚数单位)是瑞士著名数学家欧拉发明的 2020-08-02 …
立体几何中的欧拉公式有漏洞,立体几何中的欧拉公式是V+F-E=2,这是对所有简单多面体成立都成立的 2020-08-02 …
欧元被誉为“口袋里的欧洲”,对此理解准确的是()A.欧元的使用使欧洲一体化成为欧洲公众参与推动的自下 2020-11-04 …
欧阳公事迹欧阳公四岁而孤,家贫无资。太夫人以荻画地,教以书字。多诵古人篇章。及其稍长,而家无书读,就 2020-12-18 …
欧元被誉为“口袋里的欧洲”,理解正确的是A.欧元的使用使欧洲一体化成为欧洲公民参与与推动的自上而下的 2020-12-18 …