早教吧作业答案频道 -->数学-->
如何用配方法求得方程ax²+bx+c=0(a≠0)的根?
题目详情
如何用配方法求得方程ax²+bx+c=0(a≠0)的根?
▼优质解答
答案和解析
你好
首先 方程左右两边同时除以a 得
x²/a+b/ax+c/a=0
然后 配平方 x²+b/ax+(b/4a)²-(b/4a)²+c=0
(x+b/2a)²=(b/4a)²-c
整理右边 (x+b/2a)²=(b²-4ac)/4a
打开左边的平方 右边加根号 (x+b/2a)=√(b²-4ac)/4a
所以 x=(-b±√△)/2a 注:我这里用△代表b²-4ac
还有 给你更正你给出的△=b²-4ac不是求根公式,△只不过是代替b²-4ac的符号而已 是规定的 求根公式是这个: x=(-b±√△)/2a
首先 方程左右两边同时除以a 得
x²/a+b/ax+c/a=0
然后 配平方 x²+b/ax+(b/4a)²-(b/4a)²+c=0
(x+b/2a)²=(b/4a)²-c
整理右边 (x+b/2a)²=(b²-4ac)/4a
打开左边的平方 右边加根号 (x+b/2a)=√(b²-4ac)/4a
所以 x=(-b±√△)/2a 注:我这里用△代表b²-4ac
还有 给你更正你给出的△=b²-4ac不是求根公式,△只不过是代替b²-4ac的符号而已 是规定的 求根公式是这个: x=(-b±√△)/2a
看了 如何用配方法求得方程ax²+...的网友还看了以下:
关于一元二次方程的问题已知三个关于X的一元二次方程ax的平方+bx+c=0,cx的平方+ax+b= 2020-05-16 …
下列方程中,一定是关于x的一元二次方程的是()A ax的平方+bx+c=0 B k的平方x的平方+ 2020-05-16 …
线性代数设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m*n矩阵,则下列命题中正确的是(不定 2020-06-24 …
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题①若Ax=0的解均是B 2020-06-30 …
若a>0,b>0,f(x)=根号下(ax^2+bx)的定义域={x|ax^2+bx>=0}=(负无 2020-07-15 …
如何证明AX=0,BX=0同解问题第一:A(m*n),B(t*n)的行向量等价时,证明AX=0.B 2020-07-20 …
关于齐次线性方程组的解的判断题设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,则下 2020-07-31 …
线性代数题设A为列满秩矩阵,AB=C,证明线性方程Bx=0与Cx=0同解 2020-07-31 …
若R(B)=n,则线性方程BX=0只有零解.从而对任意n维列向量X不等于0,有BX不等于0.这后半 2020-08-01 …
已知a,b,c都是实数,且满足(2-a)的平方+根号下a的平方加b加c+1c+81=0,ax的平方 2020-08-02 …