早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是()A.等腰梯形B.矩形C.菱形D.正方形

题目详情
如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是(  )

A.等腰梯形
B.矩形
C.菱形
D.正方形
▼优质解答
答案和解析
连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=
1
2
AC;
同理可证得:NP=
1
2
DB,QP=
1
2
AC,MQ=
1
2
BD;
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选C.