早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.(1)某探究小组

题目详情
如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.
(1)某探究小组发现:当点D在线段OA上时,有①EF=BF;②∠DCF=45°,请选择其中一个证明.
(2)当AD=2时,求点F的坐标.
(3)探究小组又发现:如图2.当点D在线段OA上时,射线CD、CF与射线OB分别交于点M,N,线段OM,MN,BN之间除了存在OM+MN+NB=6
2
外,还存在着另外的等式关系,你能找到并写出这个等式吗?当点D不在线段OA上时,这两个等式是否仍然成立?请说明理由.
作业搜
▼优质解答
答案和解析
(1)证明:如图1中,
作业搜
∵O、E关于CD对称,
∴OD=DE,OC=CE=CB,∠DCE=∠DCO,
∵CF=CF,
∴Rt△CFE≌Rt△CFB,
∴EF=BF,∠FCE=∠FCB,
∴∠DCF=∠DCE+∠FCE=
1
2
∠ECO+
1
2
∠ECB=
1
2
∠OCB=45°,
∴FE=FB,∠DCF=45°.

(2) 如图1中,
∵AD=2,
∴OD=DE=4,设EFF=FB=x,则AF=6-x,
在Rt△ADF中,∵AD2+AF2=DF2
∴22+(6-x)2=(4+x)2
∴x=
6
5


(3) ①如图2中,当当D在线段OA上时,结论:MN2=OM2+NB2
作业搜
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
∵∠DCF=45°,
∴∠OCM+∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCB+∠BCP=45°,
∴∠MCN=∠NCP,∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2
∴MN2=OM2+NB2

②如图3中,当点D在线段OA的延长线上时,第一个结论变了:OM+MN-BN=6
2
.理由:OM+MN-BN=OB=6
2

第二个结论不变,理由如下:
作业搜
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
易证∠DCO=∠DCE,∠FCE=∠FCB,
∴∠DCF=∠DCE-∠FCE=
1
2
∠OCE-
1
2
∠BCE=
1
2
(∠OCE-∠BCE)=45°,
∴∠OCM-∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCP=∠BCP-∠BCN=45°,
∴∠MCN=∠NCP=45°,
∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2
∴MN2=OM2+NB2