早教吧作业答案频道 -->数学-->
如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.(1)某探究小组
题目详情
如图1,在平面直角坐标系中,已知点A(0,6).点B(6,6),点C(6,0),点D是射线OA(O,A除外)上的动点,点E是O点关于直线CD的对称点,延长DE交直线AB于点F,连结CF.
(1)某探究小组发现:当点D在线段OA上时,有①EF=BF;②∠DCF=45°,请选择其中一个证明.
(2)当AD=2时,求点F的坐标.
(3)探究小组又发现:如图2.当点D在线段OA上时,射线CD、CF与射线OB分别交于点M,N,线段OM,MN,BN之间除了存在OM+MN+NB=6
外,还存在着另外的等式关系,你能找到并写出这个等式吗?当点D不在线段OA上时,这两个等式是否仍然成立?请说明理由.
(1)某探究小组发现:当点D在线段OA上时,有①EF=BF;②∠DCF=45°,请选择其中一个证明.
(2)当AD=2时,求点F的坐标.
(3)探究小组又发现:如图2.当点D在线段OA上时,射线CD、CF与射线OB分别交于点M,N,线段OM,MN,BN之间除了存在OM+MN+NB=6
2 |
▼优质解答
答案和解析
(1)证明:如图1中,
∵O、E关于CD对称,
∴OD=DE,OC=CE=CB,∠DCE=∠DCO,
∵CF=CF,
∴Rt△CFE≌Rt△CFB,
∴EF=BF,∠FCE=∠FCB,
∴∠DCF=∠DCE+∠FCE=
∠ECO+
∠ECB=
∠OCB=45°,
∴FE=FB,∠DCF=45°.
(2) 如图1中,
∵AD=2,
∴OD=DE=4,设EFF=FB=x,则AF=6-x,
在Rt△ADF中,∵AD2+AF2=DF2
∴22+(6-x)2=(4+x)2,
∴x=
.
(3) ①如图2中,当当D在线段OA上时,结论:MN2=OM2+NB2.
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
∵∠DCF=45°,
∴∠OCM+∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCB+∠BCP=45°,
∴∠MCN=∠NCP,∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
②如图3中,当点D在线段OA的延长线上时,第一个结论变了:OM+MN-BN=6
.理由:OM+MN-BN=OB=6
.
第二个结论不变,理由如下:
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
易证∠DCO=∠DCE,∠FCE=∠FCB,
∴∠DCF=∠DCE-∠FCE=
∠OCE-
∠BCE=
(∠OCE-∠BCE)=45°,
∴∠OCM-∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCP=∠BCP-∠BCN=45°,
∴∠MCN=∠NCP=45°,
∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
∵O、E关于CD对称,
∴OD=DE,OC=CE=CB,∠DCE=∠DCO,
∵CF=CF,
∴Rt△CFE≌Rt△CFB,
∴EF=BF,∠FCE=∠FCB,
∴∠DCF=∠DCE+∠FCE=
1 |
2 |
1 |
2 |
1 |
2 |
∴FE=FB,∠DCF=45°.
(2) 如图1中,
∵AD=2,
∴OD=DE=4,设EFF=FB=x,则AF=6-x,
在Rt△ADF中,∵AD2+AF2=DF2
∴22+(6-x)2=(4+x)2,
∴x=
6 |
5 |
(3) ①如图2中,当当D在线段OA上时,结论:MN2=OM2+NB2.
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
∵∠DCF=45°,
∴∠OCM+∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCB+∠BCP=45°,
∴∠MCN=∠NCP,∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
②如图3中,当点D在线段OA的延长线上时,第一个结论变了:OM+MN-BN=6
2 |
2 |
第二个结论不变,理由如下:
理由:将△OCM绕点C顺时针旋转90°,得到△CBP.
易证∠DCO=∠DCE,∠FCE=∠FCB,
∴∠DCF=∠DCE-∠FCE=
1 |
2 |
1 |
2 |
1 |
2 |
∴∠OCM-∠BCN=45°,
∵∠OCM=∠BCP,
∴∠NCP=∠BCP-∠BCN=45°,
∴∠MCN=∠NCP=45°,
∵CN=CN,CM=CP,
∴△CNM≌△CNP,
∴MN=PN,
∵∠OBC=∠CBP=45°,
∴∠MBP=90°,
∴BN2+BP2=PN2,
∴MN2=OM2+NB2.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
若f(x)是定义在R上的奇函数,且f(x-π)=-f(x),给出下列结论1、f(π)=02、f(x 2020-04-12 …
符号"f"表示一种新运算,它对一些数的运算结果如下:①f(-2)=-2-1=-3,f(-1)=-1 2020-05-16 …
对于函数f(x)=sin(x-π/2)(x属于R),给出下列结论1.数f(x)的最小正周期为2π. 2020-05-22 …
如果:记y=x/(1+x)=f(x),并且f(1)表示当x=1时y的值,即f(1)=1/(1+1) 2020-05-22 …
证明函数非奇非偶比如f(x)=ax+1/x²,参考答案写的是当a≠0时、用特殊数值法取f(1)得出 2020-06-05 …
已知y=f(x+1)的定义域为[1,2],求下列函数的定义域(1)f(x)(2)f(x-3)(3) 2020-06-25 …
已知函数f(x-1)的图像与函数g(x)的图像关于直线y=x对称,且g(1)=2则:A,f(1)= 2020-06-27 …
已知函数f(x)=aex-12x2-x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点 2020-08-02 …
在f(m,n)中,m、n、f(m,n)∈N*,且对任何m,n都有:(i)f(1,1)=1;(ii)f 2020-11-01 …
高中函数已知定义在[-1,1]上的函数f(x),对任意x∈[-1,1]有f(-x)=-f(x),且f 2020-12-08 …