早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知定义域为R的函数f(x)满足:①f(x+y)=f(x)•f(y)对任何实数x、y都成立;②存在实数x1、x2使,f(x1)≠f(x2).求证:(1)f(0)=1;(2)f(x)>0.

题目详情
已知定义域为R的函数f(x)满足:
①f(x+y)=f(x)•f(y)对任何实数x、y都成立;
②存在实数x1、x2使,f(x1)≠f(x2).
求证:
(1)f(0)=1;
(2)f(x)>0.
▼优质解答
答案和解析
证明:(1)令x=y=0则f(0)=f2(0),
∴f(0)=0或f(0)=1
若f(0)=0则令y=0,即有f(x)=f(x)•f(0)=0对x∈R均成立,与②矛盾,
故f(0)≠0,
若f(0)=1,则f(x)=f(x)成立,
∴f(0)=1;
(2)将x,y均换成
x
2
,则
f(x)=f2
x
2
)即f(x)≥0,
若f(x)=0这与②矛盾,
∴f(x)>0成立.