早教吧作业答案频道 -->其他-->
(2014•上海二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk.(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,
题目详情
(2014•上海二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,其公比为qk.
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=
.
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk.
(1)若qk=2(k∈N*),求a1+a3+a5+…+a2k-1;
(2)若对任意的k∈N*,a2k,a2k+1,a2k+2成等差数列,其公差为dk,设bk=
1 |
qk−1 |
①求证:{bk}成等差数列,并指出其公差;
②若d1=2,试求数列{dk}的前k项的和Dk.
▼优质解答
答案和解析
(1)∵数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+1成等比数列,公比qk=2(k∈N*),
∴
=4,
∴a1+a3+a5+…+a2k-1=
=
(4k−1).
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk,
∴2a2k+1=a2k+a2k+2,
而a2k=
,a2k+2=a2k+1•qk+1,
∴
+qk+1=2,则qk+1−1=
,
得
=
,
∴
−
=1,即bk+1-bk=1,
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2,
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
即
=k,得qk=
,
∴
=
,
则a2k+1=
∴
a2k+1 |
a2k−1 |
∴a1+a3+a5+…+a2k-1=
1−4k |
1−4 |
1 |
3 |
(2)①∵a2k,a2k+1,a2k+2成等差数列,其公差为dk,
∴2a2k+1=a2k+a2k+2,
而a2k=
a2k+1 |
qk |
∴
1 |
qk |
qk−1 |
qk |
得
1 |
qk+1−1 |
qk |
qk−1 |
∴
1 |
qk+1−1 |
1 |
qk−1 |
∴{bk}是等差数列,且公差为1.
②∵d1=2,∴a3=a2+2,
则有a22=1×a3=a2+2,
解得a2=2,或a2=-1.
(i)当a2=2时,q1=2,∴b1=1,
则bk=1+(k-1)×1=k,
即
1 |
qk−1 |
k+1 |
k |
∴
a2k+1 |
a2k−1 |
(k+1)2 |
k2 |
则a2k+1=
a2k+1 |
a2k−1 |
看了 (2014•上海二模)在数列...的网友还看了以下:
在数列{an}中,a1=1,且对任意k∈N*,a2k-1、a2k、a2k+1成等比数列其公比为根号 2020-05-17 …
在数列{an}中,a1=0,且对任意k∈N*,a2k-1.、a2k、a2k-1在数列{an}中,a 2020-05-17 …
关于栈和队列的问题设有栈S和队列Q,其初始状态为空,元素a1,a2,a3,a4,a5,a6依次入栈 2020-06-28 …
(2014•上海二模)在数列{an}中,a1=1,且对任意的k∈N*,a2k-1,a2k,a2k+ 2020-07-09 …
在Excel工作表中,A5单元格的值小于60,则B5单元格为"不及格",否则为"及格",则B在Ex 2020-07-12 …
已知数列{an}的首项a1=1,且an=2a(n-1)+1〔n大于等于2〕求a5(n-1)已知数列 2020-07-30 …
购买5种教具A1,A2,A3,A4,A5的件数和用钱总数如下:第一次购买:数量:A1:1,A2:3, 2020-10-31 …
(2014•孝感二模)已知{an}为等差数列,Sn为其前n项和,且2Sn=an+2n2(n∈N*). 2020-11-12 …
在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k 2020-11-19 …
1.数列7,77,777,7777...的一个通项公式是?2.在正项等比数列{an}中,a1a5+2 2021-02-09 …