早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设(x+1)4(x+4)8=a0(x+3)12+a1(x+3)11+…+a11(x+3)+a12.求:(1)a0+a1+a2+…+a12的值;(2)a0+a2+a4+…+a12的值.

题目详情
设(x+1)4(x+4)8=a0(x+3)12+a1(x+3)11+…+a11(x+3)+a12.求:
(1)a0+a1+a2+…+a12的值;
(2)a0+a2+a4+…+a12的值.
▼优质解答
答案和解析
(1)因为(x+1)4(x+4)8=a0(x+3)12+a1(x+3)11+…+a11(x+3)+a12
当x=-2时,x+3=1.等式化为:(-1)4(-2)8=28=256=a0+a1+a2+…+a12
所以a0+a1+a2+…+a12=256…①
(2).当x=-4时,x+3=-1.等式化为:(-3)4(0)8=0=a0-a1+a2-a3+…+a12…②
上述①②两等式相加有:左边=256+0=256,
右边=(a0+a1+a2+…+a12)+(a0-a1+a2-a3+…+a12
=2(a0+a2+…+a12) 所以a0+a2+…+a12=
256
2
=128
所以a0+a2+…+a12=128.