早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}(n∈N*)满足a1=1,an+1=3an+2.(Ⅰ)证明{an+1}是等比数列,并求{an}的通项公式;(Ⅱ)若数列{bn}满足bn=log3an+12,记Tn=1b2b4+1b3b5+1b4b6+…+1bnbn+2,求Tn.

题目详情
已知数列{an}(n∈N*)满足a1=1,an+1=3an+2.
(Ⅰ)证明{an+1}是等比数列,并求{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=log3
an+1
2
,记Tn=
1
b2b4
+
1
b3b5
+
1
b4b6
+…+
1
bnbn+2
,求Tn
▼优质解答
答案和解析
(Ⅰ)证明:∵an+1=3an+2,∴an+1+1=3(an+1).
∴{an+1}是等比数列,首项为2,公比为3.
an+1=2×3n-1,解得an=2×3n-1-1.
(Ⅱ) 由(Ⅰ)知bn=log3
an+1
2
=n-1,
1
bnbn+2
=
1
(n-1)(n+1)
=
1
2
(
1
n-1
-
1
n+1
).
∴Tn=
1
b2b4
+
1
b3b5
+
1
b4b6
+…+
1
bnbn+2
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+…+(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)]
=
1
2
(1+
1
2
-
1
n
-
1
n+1
)
=
3
4
-
2n+1
2n2+2n